151779 (733124), страница 2
Текст из файла (страница 2)
(19)
и т. д.
Сформулируем теперь количественно условие разреженности газа и условие слабости взаимодействия. Пусть r0 — радиус действия межмолекулярных сил и U0 — характерная величина потенциальной энергии взаимодействия. Случай разреженного газа осуществляется, если r0 много меньше среднего расстояния между частицами ω1/3, и, следовательно, в этом случае малым параметром задачи является величина . Случай слабого взаимодействия реализуется, если потенциальная энергия мала по сравнению с кинетической энергией ~ Т. Следовательно, в этом случае малым параметром задачи является величина β= U0/T.
Допустим, что в обоих случаях корреляции между координатами и скоростями частиц являются слабыми и корреляционные функции Gn (x1, ..., хп, t) малыми по параметрам а или β соответственно.
Для того чтобы построить методы решения системы уравнений Боголюбова в этих предположениях, запишем систему (7) в более детализированном виде
(20)
выделив в операторе слагаемые, содержащие и не содержащие потенциал взаимодействия
(21)
(22)
(23)
Перейдем в уравнениях (20) безразмерным переменным, выбрав в качестве единицы длины r0, скорости , ускорения
и времени
. Для простоты мы не будем вводить новые обозначения для безразмерных переменных и сделаем в уравнениях (20) замены
,
(24)
Кроме того, учитывая условие нормировки (19) для функци Fn(x1, ..., хN, t), из которого видно, что Fn имеет размерность , введем безразмерную функцию распределения с помощью замены
(25)
Тогда уравнения Боголюбова (20) при запишутся в виде
(26)
Заметим, что, предполагая факторизацию функций Fn в нулевом приближении,
Fn(0) = F1 (х1, t) F1 (х2, t)…F1(xn,t), мы получим для одной и той же функции F1 (xi, t) N уравнений. Ясно, что необходимым условием допустимости факторизации является совместность этих уравнений нулевого приближения.
Убедимся, что случай разреженного газа ( )
приводит в нулевом приближении к несамосогласованной системе. Действительно, система уравнений (26) в нулевом приближении выглядит следующим образом:
Легко видеть, что уравнения этой системы будут совместными только при условии отсутствия взаимодействия между частицами wik = 0. Следовательно, в случае разреженного газа корреляциями нельзя пренебрегать даже в нулевом приближении. Собственно говоря, этого следовало ожидать, так как для разреженного газа а << 1 «хорошим» кинетическим уравнением является уравнение Больцмана, которое несовместимо с требованием факторизации. Мы видели, что вывод уравнения Больцмана по Боголюбову предполагает только факторизацию функции F2 в «бесконечном прошлом».
Рассмотрим случай β = U0/T <<; 1, , что соответствует горячему газу со слабым взаимодействием между частицами, который, однако, может быть достаточно плотным. Фактически при типичной глубине потенциальной ямы U0~ (10-1 - 10-2) эв U0/T<<1 выполняется уже при комнатных температурах. В этом случае в нулевом приближении получаем незацепляющиеся уравнения
(27)
в которых переменные х1,..., хп разделяются. Это значит, что предположение является самосогласованным и одночастичная функция F1(0)(r, v, t) подчиняется уравнению
(28)
Интегрируя уравнение характеристик
(29)
находим, что решение уравнения (28) имеет вид
(30)
где ψ(r,v,t) - произвольная функция своих аргументов, совместимая с начальными и граничными условиями. Из выражения (30) следует, что F1(0)(r, v, t) остается постоянной вдоль динамической траектории частиц в μ-пространстве, чего и следовало ожидать для системы слабо взаимодействующих частиц в нулевом приближении.
Следующие приближения для функций Fn могут быть найдены последовательно из уравнений:
(31)
Решая первое из этих уравнений, можно в принципе найти F1, решая затем второе уравнение — найти G2 и, следовательно, F2 и т. д.
Мы ограничимся нулевым приближением (30) и в качестве иллюстрирующего примера рассмотрим задачу о свободном расширении газа в пустоту. Пусть в начальный момент t = 0 газ с максвелловским распределением по скоростям в одномерном случае занимает полупространство х<0. Затем стенка х = 0 удаляется и газ начинает расширяться.
Начальное распределение f(r, v, 0) задается тогда формулой
, (32)
где σ (х) — ступенчатая функция (напоминаем, что функция f(r, v, t) связана с F1 (r, v, t) соотношением f = F1n = F1/ω).
Согласно соотношению (30) продолжение во времени функции f(х, v, 0) дается формулой
(33)
Пространственная плотность числа частиц в точке х в момент времени t равна
, (34)
и средняя скорость газа u(x,t) равна
(35)
Так как п (х, t) и и (х, t) зависят только от x/t, то и распределение плотности газа, и распределение по скоростям в пространстве остаются подобными самим себе, а геометрическое место равных плотностей и равных скоростей потока равномерно перемещается вдоль оси х.
Сделаем в заключение следующее замечание. Поскольку уравнение свободно-молекулярного течения (27) представляет собой одночастичное уравнение Лиувилля, оно является, строго говоря, механическим, а не статистическим утверждением, и статистический смысл в него вложен «насильственно». Это проявляется, в частности, в обратимости решений уравнения (27). Например, если решение (32) при t = t0 принять за начальное условие и продолжить его во времени, заменив х на x+vxt, обратив направление скорости всех частиц, то спустя время t0 мы придем к исходному состоянию (32). В обращенном таким образом движении газ самопроизвольно сжимается вместо того, чтобы расширяться, и необратимость отсутствует.
Список использованных источников
1. Базаров И. П. Неравновесная термодинамика и физическая кинетика / Базаров И. П., Геворкян Э. В., Николаев П. Н. - М., 1989 – 240 с.
2. Гуревич Л. Э. Основы физической кинетики / Гуревич Л. Э. – М. 1940 – 245 с.
3. Лифшиц, Е. М., Питаевский, Л. П. Физическая кинетика / Лифшиц, Е. М., Питаевский, Л. П. - М.: Физматлит, 2007. - 536 с.
1>0>