151552 (733066)

Файл №733066 151552 (Основные положения синтеза электрических цепей)151552 (733066)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

19



Академия

Кафедра Физики

Реферат

«Основные положения синтеза электрических цепей»

Орёл 2009

Содержание

Введение………………………………………………………………………..3

Понятие о синтезе электрических цепей……………………………………..4

Условия физической реализуемости передаточных функций……………...4

Этапы решения задачи синтеза ЭЦ…………………………………………...7

Методы аппроксимации заданных характеристик…………………………..9

Литература…………………………………………………………………….16

Введение

Важнейшей составной частью проектирования систем передачи и обработки информации, а также их компонентов, является задача синтеза, под которым понимают построение цепей с заданными свойствами.

Главное в задачах синтеза, непременно подлежащее исполнению, состоит в том, что проектируемая цепь должна воспроизводить с необходимой точностью одну или несколько заданных характеристик.

Понятие о синтезе электрических цепей

Приближенное описание требуемых свойств с помощью математических уравнений, функций, алгоритмов и т.д. в дальнейшем будем называть математической моделью.

Если по ней можно построить электрическую схему, то такую модель называют удовлетворяющей условиям физической реализуемости (УФР) или осуществимости (УФО).

Отметим также тот факт, что одной и той же математической моделью, удовлетворяющей УФР, могут быть поставлены в точное соответствие не одна, а множество схем.

Очевидно, что формулирования УФР для той или иной математической модели не представляются возможным без знания свойств функций линейных электрических цепей. В задачах анализа и синтеза ЛРТУ чаще других используются физически осуществимые математические модели в виде:

  • операторных передаточных функций [Т(p),Z(p),Y(p)];

  • комплексных передаточных функций [T(jω), АЧХ, ФЧХ];

  • временных характеристик [h(t), g(t)].

Рассмотрим свойства лишь некоторых из них, которые в наибольшей мере используются в задачах синтеза ТЭЦ.

Условия физической реализуемости передаточных функций

а) Свойства операторных передаточных функций.

Перечислим основные свойства операторных передаточных функций и квадрата АЧХ пассивных цепей :

  1. Передаточная функция является дробно-рациональной функцией с вещественными коэффициентами. Вещественность коэффициентов объясняется тем, что они определяются элементами схемы.

  2. Полюсы передаточных функций располагаются в левой полуплоскости комплексной переменной . На расположение нулей ограничений нет. Докажем это свойство на примере передаточной функции . Выберем входное воздействие или в операторной форме . Изображение выходного напряжения в этом случае численно равно , т.е.

,

где W(p)-полином числителя передаточной функции; А1, А2,… Аm-коэффициенты разложения дробно-рациональной функции на сумму простых дробей. Перейдем от изображения к оригиналу :

(1)

где в общем случае .

В пассивных и устойчивых активных четырёхполюсниках колебания на выходе четырёхполюсника после прекращения воздействия должны иметь затухающий характер. Это означает, что вещественные части полюсов должны быть отрицательными, т.е. полюсы должны находиться в левой полуплоскости переменной p.

3. Степени полиномов числителей передаточной функции и квадрата АЧХ не превышают степеней полиномов знаменателей , т.е. . Если бы это свойство не выполнялось, то на бесконечно больших частотах АЧХ принимало бы бесконечно большое значение (т.к. числитель рос бы с увеличением частоты быстрее знаменателя), т.е. цепь обладала бесконечным усилением, что противоречит физическому смыслу.

Итак, будем считать, что ОПФ соответствует УФР, если Т(р) имеет:

- дробно-рациональную математическую конструкцию ( );

- вещественные коэффициенты ;

- полином знаменателя – полином Гурвица V(p).

б) свойства комплексных передаточных функций.

Из формулы (1) при Р=jω получаем

где – чётные части полинома, есть функции вещественные;

– нечётные части полинома являются функциями мнимыми.

Из полученного выражения находим

;

;

Таким образом, АЧХ является иррациональной четной функцией частоты ω,а ФЧХ – нечётной, трансцендентной функцией.

Для математического моделирования более удобной является функция

поскольку она во всех случаях есть чётная дробно-рациональная функция.

Её свойства вытекают непосредственно из свойств КПФ и АЧХ и позволяют в простом виде выразить УФР соответствующих математических моделей. Итак, для {АЧХ}2 эти условия имеют следующий вид:

  • дробно-рациональные математические конструкции;

  • вещественность коэффициентов;

  • чётность функций числителя и знаменателя;

  • {АЧХ}2 0 для всех ω Є(0, ).

Свойства временных характеристик реальных цепей предлагается изучить самостоятельно.

Этапы решения задачи синтеза ЭЦ

Суть задачи синтеза в наиболее общем виде заключается в отыскании цепи, обладающей требуемыми характеристиками или свойствами и имеющей в своём составе элементы только заранее определенных разновидностей, которые в дальнейшем будем именовать элементным базисом.

Предположим, простоты ради, что синтезируемая цепь должна воспроизводить только одну характеристику ξ (х), под которой может подразумеваться АЧХ, характеристика затухания, временные характеристики и т.д.

В качестве аргумента с «х» чаще всего выступают частота или время.

Как правило ξ (х) задаётся либо в виде графика, либо таблицы и, несколько реже ξ в виде аналитического выражения.

Требуемая функция f (х) всегда задаётся в некотором интервале х Є(ха, хb), который принято называть рабочим интервалом.

Проектируемая цепь на этом интервале в идеальном случае должна иметь соответствующую функцию f (х) точно совпадающей с ξ (х).

Однако этого добиться практически невозможно, да и нет в этом необходимости. Важно, чтобы цепью конечной сложности обеспечивалась необходимая точность совпадений функций f (х) и ξ (х).

Математическое расстояние ρ{ξ(x),f(x)} как характеристика близости функций конструируется таким образом, чтобы это было одно единственное положительное число. В теории синтеза ЭЦ обычно используется Чебышевская оценка точности совпадения функций ξ (х) и f (х). (ЧОТС)

При этом математическое расстояние между ξ (х) и f (х) определяется следующим выражением

Геометрический смысл чебышевской оценки точности иллюстрируется графиками (рисунок 1).

В общем случае, при синтезе (проектировании) электрических цепей можно выделить два существенных этапа, которые будут рассмотрены в дальнейшем:

  1. Нахождение такой f (х), удовлетворяющей УФР, чтобы в рабочем интервале , где - заданная точность воспроизведения. Назовём это этапом аппроксимации.

  2. Конструирование по найденной f (х) электрической цепи. Назовём это этапом реализации.

Рисунок 1.

Методы аппроксимации заданных характеристик

В общем случае задача аппроксимации состоит в конструировании функций , удовлетворяющей УФР в заданном элементном базисе и воспроизводящей с требуемой точностью в рабочем интервале заданную графически (либо таблицей, либо аналитически) зависимость ξ(х), – варьируемые коэффициенты, значения которых и должны быть найдены в результате решения задачи аппроксимации.

Из-за недостатка времени не представляется возможным осветить все известные методы решения этой задачи. Поэтому остановимся с одной стороны на простейшей из них, имеющих достаточно большую историю их практического применения, а с другой стороны – с современными численными методами, являющимися не только универсальными, но и самыми эффективными при отыскании оптимальных решений с помощью ЭВМ.

а) Интерполирование функций

При интерполировании коэффициенты аппроксимирующей функции выбираются такими, чтобы значения заданной функции ξ(х) совпадали бы в некотором числе заранее выбранных точек х1, х2,.....,хn, называемыми точками или узлами интерполирования.

Ясно, что указанное условие позволяет составить систему из N уравнений с N неизвестными

Её решение позволяет определить все варьируемые параметры .

Преимущества метода:

  • ξ (х) может быть задана в любой форме;

  • простота решения.

Наряду с преимуществами, метод интерполирования обладает двумя существенными недостатками:

  • в ходе решения задачи аппроксимации не контролируется точность приближения функций ;

  • полученная аппроксимирующая функция f (x) может не удовлетворять УФР. В этом случае выбираются новые узлы интерполирования, хотя и в этом случае нет гарантии выполнения УФР.

б) Аппроксимация по Тейлору.

Этот вид аппроксимации требует задания функции ξ (х) в виде аналитического выражения. При этом функции f (x) и ξ (х) должны допускать разложение в ряд Тейлора в некоторой точке x=х0.

Если N – число варьируемых коэффициентов функции f (х), то в точке x=х0 должны быть равны значения функций f (х) и ξ (х), а также N-1 их производных младших порядков, т.е.

Решив систему уравнений, найдём значения параметров (коэффициенты уравнения f (х)).

Хотя такой аппроксимации присущи как и при интерполировании недостатки, однако на практике она находит широкое применение.

в) Аппроксимация по Чебышеву.

Характеристики

Тип файла
Документ
Размер
1000,07 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6549
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее