150971 (732871)

Файл №732871 150971 (Температурная зависимость проводимости полупроводника)150971 (732871)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ

УНИВЕРСИТЕТ

Кафедра физики

Реферат

Температурная зависимость проводимости полупроводника

Выполнил: Романов А.В. – группа ЗЭС-1-04___________(дата,подпись)

Проверил: ________________________________________(дата,подпись)

Домашний адрес:

432606

г. Елабуга

ул. Окружное шоссе д. 35 кв. 69

Дата отсылки:

Казань 2006

Полупроводники - это вещества, имеющие при комнатной температуре удельную электрическую проводимость в интервале от 10-8 до 106 Ом-1 м-1, которая в сильной степени зависит от вида и количества примеси и структуры вещества, а также от внешних условий: температуры, освещения, внешних электрических и магнитных полей, облучения. Электропроводность твердых тел в современной физике объясняется на основе зонной теории. На рис. I показаны упрощенные диаграммы энергетических зон собственного, акцепторного и донорного полупроводников.

Кристаллы полупроводников неизбежно в реальных условиях обладают определенным количеством посторонней примеси, даже если требуется получить материал очень высокой степени чистоты. Примеси также специально вводятся либо во время роста кристаллов с целью получить полупроводник с заданными электрическими свойствами, либо - при изготовлении приборных структур. Такие полупроводники называются легированными или примесными. Атомы примеси, отличаясь от атомов основного кристалла валентностью, создают уровни разрешенных энергий электронов в запрещенной зоне, которые либо могут поставлять электроны в зону проводимости, либо принимать на себя электроны из валентной зоны. Эти процессы мы рассмотрим в дальнейшем. В данном разделе нас будет интересовать идеализированная модель полупроводника, в котором отсутствуют какие-либо примеси. Такие полупроводники называются собственными.

При нагревании проводимость полупроводников резко возрастает. Температурная зависимость проводимости собственного полупроводника определяется изменением концентрации n и подвижности электронов - и дырок + от температуры:

= e ( n - - + n + + ) ( 1 )

Подвижность носителей заряда в полупроводниках зависит от температуры сравнительно слабо и с ее возрастанием уменьшается по закону T –3/2. Это объясняется тем, что с повышением температуры возрастает число столкновений в единицу времени, вследствие чего уменьшается скорость направленного движения носителей заряда в поле единичной напряженности.

Рассмотрим донорный полупроводник. Вследствие малой концентрации электронов проводимости полупроводники подчиняются классической статистике Максвелла-Больцмана. Поэтому в области низких температур для концентрации электронов в зоне проводимости с одним видом примеси имеем:

n = A T 3/2 e - W / kT, ( 2)

где А - коэффициент, не зависящий от Т; W - энергия активации примеси, то есть энергетический интервал между донорным уровнем и нижним краем зоны проводимости ( рис. Iв) К - постоянная Больцмана.

Рассмотрим упрощенную зонную модель собственного полупроводника, изображенную на рис. 1. Этой моделью мы в основном будем пользоваться в дальнейшем. В данной модели энергия электронов положительная и отсчитывается вверх по оси ординат. Энергия дырок отрицательная и отсчитывается вниз. Под осью абцисс подразумеваются пространственные координаты, а также по этой оси, в зависимости от условий задачи, могут откладываться температура, концентрация примеси, указываться направление электрического поля. Валентная зона и зона проводимости ограничены прямыми, обозначающими: Ev - потолок валентной зоны; Ec - дно зоны проводимости. Выбор начала отсчета энергии электрона произволен, как правило, она отсчитывается от потолка валентной зоны. Ширина запрещенной зоны определяется как разность Eg = Ec - Ev.

Рассмотрим теперь в чем состоит физическая причина резкого отличия в температурной зависимости проводимости полупроводников и металлов.

Рис. 1. Простая зонная модель собственного полупроводника: Ev - потолок валентной зоны; Ec - дно зоны проводимости.

Eg = Ec - Ev - ширина запрещенной зоны. G - генерация электронно-дырочной пары, R - рекомбинация электронно-дырочной пары.

Волнистыми стрелками показаны процессы поглощения и испускания фотона при световой генерации и излучательной рекомбинации соответственно.

При температуре Т > 0 средняя энергия фонона равна (k - постоянная Больцмана), например, при комнатной температуре Т = 300 К она равна 0,039 эВ. Однако в силу распределения Максвелла - Больцмана существует конечная вероятность того, что фонон имеет энергию Eg, которая может значительно превышать среднюю, и эта вероятность пропорциональна . Электроны постоянно обмениваются энергией с фононами в процессе столкновений. Естественно, в стационарных условиях электронная подсистема кристалла в целом находится в тепловом равновесии с колебаниями решетки, однако отдельные электроны могут иметь энергию много больше средней. Тепловым возбуждением электрона называется акт передачи энергии от фонона электрону такой, что происходит разрыв ковалентной связи.

Если электрон получит от фонона энергию больше или равную Eg он может "заброситься" из валентной зоны в зону проводимости, где он становится свободным и может участвовать в переносе заряда при приложении внешнего электрического поля. Одновременно с переходом электрона в зону проводимости в валентной зоне образуется ІсвободнаяІ дырка, которая также участвует в электропроводности. Таким образом, в собственных полупроводниках свободные электроны и дырки рождаются парами, этот процесс называется генерацией электронно-дырочных пар (рис. 1). Наряду с этим происходит обратный процесс - взаимная аннигиляция электронов и дырок, когда электрон возвращается в валентную зону. Этот процесс называется рекомбинацией электронно-дырочных пар. Число генерированных (рекомбинированных) пар носителей заряда в единице объема в единицу времени называется темпом генерации-G (рекомбинации - R). В стационарных условиях темпы тепловой генерации и рекомбинации равны, то есть G = R (1)

Заметим, что генерация электронно-дырочных пар может происходить и при облучении полупроводника светом частотой v, такой, что энергия фотона удовлетворяет условию

(3)

При световой генерации электрон поглощает фотон (рис. 1). При обратном процессе рекомбинации высвободившаяся энергия, равная Eg, может либо передаваться от электрона обратно решетке (фонону), либо уноситься фотоном. Могут также одновременно рождаться фононы и фотоны, но тогда, в силу закона сохранения, их парциальные энергии меньше Eg. Если энергия уносится фотоном, то этот процесс называется излучательной рекомбинацией. Световая генерация и излучательная рекомбинация лежат в основе работы целого класса оптоэлектронных полупроводниковых приборов - источников и приемников излучения, которые мы в данном курсе не имеем возможности рассматривать.

Очевидно, что при тепловой генерации более вероятны переходы электронов с одного из верхних уровней валентной зоны, если они заняты электронами, на один из нижних уровней зоны проводимости, - если они свободны, поскольку для таких переходов требуется меньшая энергия. Отсюда следует, что темп генерации G пропорционален: числу возможных занятых состояний электронов Nv вблизи потолка валентной зоны; числу незанятых уровней Nc вблизи дна зоны проводимости (физический смысл Nv и Nc будет рассмотрен в дальнейшем) и вероятности электрону иметь энергию Eg:

(4)

где, a - коэффициент пропорциональности, зависящий от частоты столкновений фононов и электронов. С другой стороны, темп рекомбинации R пропорционален вероятности "встречи" носителей, т.е. произведению концентраций электронов n и дырок р (g - коэффициент пропорциональности):

(5)

так как для собственного полупроводника n = p. В стационарном случае имеет место равенство (2), тогда

(6)

Отсюда

(7)

Проводимость кристалла согласно (6) пропорциональна концентрации электронов и подвижности. Как видно из выражения (7) концентрация n в собственном полупроводнике экспоненциально растет с увеличением температуры, в то же время температурная зависимость подвижности в проводимости играет менее заметную роль. Таким образом, проводимость собственного полупроводника в первом приближении растет с температурой по такому же закону, что и концентрация электронов и дырок (пока не станет заметным рассеяние носителей заряда на тепловых колебаниях решетки). Поэтому можно записать:

(8)

Итак, с феноменологической точки зрения полупроводники отличаются от металлов тем, что в полупроводниках с повышением температуры проводимость очень быстро растет. Физическая причина этого заключается в увеличении темпа тепловой генерации электронно-дырочных пар с ростом температуры. Если прологарифмировать выражение (8), то оно примет вид

(9)

Следовательно, если на графике по оси ординат откладывать lns , а по оси абцисс - обратную температуру, то получим прямую с наклоном Eg/2k , как показано на рис. 2. Таким образом, зная наклон этой прямой можно определить важнейшую характеристику полупроводника - ширину запрещенной зоны. Определяемую таким образом величину Eg называют термической шириной запрещенной зоны, поскольку ее еще определяют и из оптических измерений по спектрам поглощения излучения и вычисляют Eg, на основании выражения (9).

Рис. 2. Температурная зависимость проводимости собственного полупроводника

Наиболее важные элементарные полупроводники и полупроводниковые соединения приведены в таблице.

Изоляторы, у которых ширина запрещенной зоны достаточно велика для того, чтобы ни один электрон, находящийся в валентной зоне, не мог ни при какой температуре, вплоть до температуры плавления, переброситься в зону проводимости, называются диэлектриками. Диэлектрики имеют очень высокое электрическое сопротивление. В полупроводниковой электронике большое практическое значение имеют диэлектрики, представляющие собственные оксиды полупроводников. Для кремния - это двуокись кремния SiO2, имеющая ширину запрещенной зоны 8 эВ.

Оценки показывают, что при ширине запрещенной зоны Eg > 2 эВ вероятность тепловой генерации электронно-дырочных пар становится бесконечно малой при всех доступных нам температурах, поэтому к диэлектрикам можно отнести все изоляторы, у которых Eg > 2 эВ. Однако следует помнить, что такая классификация подходит только к ІчистымІ беспримесным веществам, поскольку легирование диэлектриков, например, алмаза (Eg = 5,3 эВ) приводит к возникновению у них проводимости, характерной для полупроводников.

Существуют еще интересные с точки зрения зонной структуры кристаллы, которые имеют большое практическое значение.

Нередки случаи, когда при Т = 0 К зоны перекрываются очень незначительно. Благодаря этому число электронов и пустых мест в частично заполненных зонах очень мало: 10-3 - 10-5 на атом. Такие вещества обладают промежуточными между металлами и полупроводниками свойствами: при низких температурах они ведут себя, как металлы, а при высоких - как полупроводники. Их часто называют полуметаллами. Концентрация электронов в них изменяется в широких пределах n = 1018-1021 см-3. Характерными примерами таких веществ могут служить висмут, сурьма.

Сравнительно недавно был обнаружен особый класс веществ, строго занимающий промежуточное положение между металлами и полупроводниками - бесщелевые полупроводники - кристаллы, у которых расстояние между валентной зоной и зоной проводимости равно нулю. В бесщелевых полупроводниках нижняя заполненная электронами зона примыкает к верхней зоне, в которой при Т = 0 К вовсе нет электронов. К бесщелевым полупроводникам относятся теллурид ртути HgTe, а также серое олово a-Sn.

Следует отметить, что изменяя межатомное расстояние в полупроводниковых кристаллах под давлением, можно добиться перекрытия валентной зоны и зоны проводимости. При этом рассматриваемое вещество превратится из полупроводника в металл. Возможен и обратный случай - возникновение запрещенной зоны и переход металла в полупроводник при достаточно сильном изменении давления на образец. С ростом температуры кристалла за счет теплового расширения постоянная решетки увеличивается. Поэтому при повышении температуры у полупроводников, как правило, запрещенная зона уменьшается; в не слишком широкой области температур это уменьшение аппроксимируется линейным законом

При комнатной температуре ширина запрещенной зоны с ростом давления в Ge и GaAs увеличивается, а в Si - уменьшается.

Литература

1. Савельев И. В. Курс общей физики, T.5.-М.: Физматлит, 1998.

2. Киреев П.С. Физика полупроводников. –М.: Высшая школа, 1975.

3. Левинштейн. М. Е, Симин Г. С. Знакомство с полупроводниками. М.: Наука, 1984. 240 с.

Характеристики

Тип файла
Документ
Размер
56,93 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее