150815 (732819)

Файл №732819 150815 (Расчёты на устойчивость)150815 (732819)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Московский государственный технический

Университет им. Н.Э. Баумана

Калужский филиал

РАСЧЕТЫ НА УСТОЙЧИВОСТЬ

Равновесное состояние упругой системы называется устойчивым, если оно мало изменяется при малых возмущениях. Если остановится на случае прямолинейных, достаточно гибких и центрально загруженных стержней, то явление потери устойчивости состоит в следующем. При силах, не превышающих некоторой величины, называемой критической силой, прямолинейное равновесное состояние является единственным и устойчивым. Однако, если сила больше критической, то прямолинейное равновесное становится неустойчивым и стержень переходит в криволинейное равновесное состояние – изгибается. Происходит бифуркация (раздвоение) равновесных форм. Величина критической силы для стержня, теряющего устойчивость в упругой стадии, определяется по формуле Эйлера:

2EIx

Fcr = , (1)

(l)2

где:

Е – модуль упругости;

Ix – минимальный момент инерции поперечного сечения стержня;

- коэффициент приведения длины, зависящий от закрепления стержня;

l – длина стержня.

Формула Эйлера может использоваться в том случае, если потеря устойчивости происходит в упругой стадии, т.е. если критическое напряжение не превосходит предела пропорциональности:

cr= Fcr /A = 2E / 2 pr , (2)

____

где: = l / ix – гибкость стержня; ix = Ix / A радиус инерции поперечного сечения; А – площадь поперечного сечения.

В 1899 г. русским инженером Ф.С.Ясинским был предложен способ расчёта сжатых стержней на устойчивость, состоящий в том, что расчёт на устойчивость заменяется расчётом на обыкновенное сжатие, но допускаемые напряжения при этом полагаются переменными, зависящими от гибкости:

cradm = adm ; = cr / yc , (3)

здесь = коэффициент снижения допускаемого напряжения; adm – допускаемое напряжение на сжатие.

За пределами применимости формулы Эйлера, т.е. для малых значений гибкости, величины коэффициента рассчитываются с учётом возникновения упруго- пластических деформаций. Разумеется, что зависит не только от гибкости, но и от свойств материала. Для наиболее употребительных материалов составлены таблицы. Приведём такую таблицу для Ст.3, материала наиболее часто используемого для сжатых элементов конструкций.

Табл. 1

0 1.00 110 0.52

10 0.99 120 0.45

20 0.96 130 0.40

30 0.94 140 0.36

40 0.92 150 0.32

50 0.89 160 0.29

60 0.86 170 0.26

70 0.81 180 0.23

80 0.75 190 0.21

90 0.69 200 0.19

100 0.60 --- ---

Для промежуточных значений соответствующие им значения определяются путём линейной интерполяции.

Для стержней, имеющих гибкость больше 200 (редко встречающийся в практике случай), коэффициент снижения допускаемых напряжений может быть определён по формуле (3) с учётом (2).

Возможны два типа задач.

1)Задано поперечное сечение сжатого стержня - требуется найти усилие, которое может быть допущено, исходя из условия устойчивости: Nadm= = admA.


Пример 1. Определить нагрузку, которую можно допустить на ферму, исходя из устойчивости поясов АВ и СD (Рис.1). Поперечное сечение поясов выполнено из двух уголков 63; материал Ст.3, adm= 160 МПа.

F 10

B

x

А С D

Рис.1

Площадь поперечного сечения А = 26,13 = 12,26см2 ( ГОСТ 8509-72). Осью, относительно которой момент инерции минимален, является ось x. Очевидно, что радиус инерции сечения относительно оси x , будет равняться радиусу инерции одного уголка ix = 1,94см (по сортаменту). Т.к. узлы фермы считаются шарнирными, то коэффициент приведения длины .Приведенная длина l = 1 2м = 200см. Гибкость = 200 / 1,94 103,1.

По таблице 1 имеем: = 0.60 – ( 0, 08/10),1 = 0,575.

Нормальная сила, которую можно допустить на стержень АВ равняется:

Nadm= admA = 0,57516кН/см212,26см2 = 112,8 кН.

С вяжем между собой силу F и усилие N.

y Fy = 0 F/2 - NSin() = 0; F = N;

N Fadm = Nadm = 112,8kH.

S

x

F/2 Рис.2

2) Второй тип задач: задана сила F – требуется подобрать размеры поперечного сечения. Можно записать: A = F /(adm ), но зависит от гибкости, следовательно, от радиуса инерции, т.е. опять от размеров поперечного сечения. Таким образом, круг замкнулся. Задача может быть решена методом попыток и сводится, по сути, к последовательности задач первого типа.

П ример 2. Подобрать размеры квадратного поперечного сечения для сжатой стойки (Рис.3). Сила F = 80кН. Материал Ст.3 с adm= 160 МПа.

Разберёмся с геометрическими харак-

теристиками сечения: А = а2, Ix = a4/12;

______ ___

F ix = Ix/A = (1/ 12 )a 0,289a.

Зададимся некоторым средним значени-

a l=0,5м ем коэффициента снижения допускаемого

напряжения 1 = 0,5. Тогда:

по табл.1 = 110 + 10(0,02/0,07) = 112,9.

Коэффициент для данного случая зак-

Рис.3 репления равняется 2.

Радиус инерции сечения ix = l / = 2,9 = 0,8857 см; сторона квадрата а = ix/0,289 = 0,8857/0,289 = 3,06см; площадь сечения А = а2 = 3,062 = = 9,36 см2. На данное сечение можно допустиь усилие:

1adm A = 0,516кН/см29,36см2 = 74,9 кН 80кН = F, т.е. сечение мало.

Пусть 2 = 0.52; = 110; ix = 100/110 = 0,909см; а = 0,909/0,289 =

= 3,15см; А = 3,152 = 9,92 см2; сечение воспринимает:

2admA = 0,52169,92 = 82,5кН, что отличается лишь на 3%.

Обычно считается, что результат достигнут, если сила, которую воспринимает сечение, отличается от силы, действующей на стержень, не более чем на 5% в ту или другую сторону:

0,95F admA 1,05F.

Округляя до более технологичного размера, примем а = 32мм. В последнем примере данных методических указаний мы покажем другой подход к организации попыток подбора, при котором образуется некоторый сходящийся итерационный процесс.

Энергетический способ определения критических сил. Изложенные выше подходы, применимы тогда, когда условия закрепления стержня и способы приложения нагрузки простейшие [1]. В более сложных случаях интегрирование дифференциального уравнения изогнутой оси стержня достаточно громоздко и целесообразно воспользоваться приближённым энергетическим способом. Рассмотрим стержень центрально сжатый силой F (Рис.4). Стержень на рисунке условно показан шарнирно опёртым, но вопрос о граничных условиях оставим пока открытым.

y

v

F F x


z dz Fп

l

Рис.4

Пусть сила F меньше эйлеровой критической силы. Если приложить к стержню некоторую малую поперечную силу Fп , то стержень изогнётся, но будет находится в устойчивом равновесном состоянии. Сжимающая сила F совершит при этом работу на перемещении , которое можно найти следующим образом. Укорочение малого элемента длиной dz будет равно:

d = dz dzCos = dz(1 Cos) = 2dzSin2( ½dz2 .

Учтём, что угол поворота равен первой производной от прогиба: v , тогда перемещение точки приложения силы найдётся:

l

½ (v)2dz .

0

Потенциальная энергия изогнутого стержня выразится

l M2dz l

U = = ½ EIx(v2dz , здесь учтено, что M = EIxv

0 2EI x 0

Изменение полной энергии стержня при малом изгибе будет складываться из потенциальной энергии деформации и изменения потенциала внешних сил на перемещении .

Э = U F

Если Э 0, то состояние стержня устойчиво. Если же Э 0, т.е. F U, то сила производит работу большую, чем может накопиться в стержне в виде энергии упругой деформации. Избыточная работа идёт на сообщение кинетической энергии, стержень приходит в движение и прогибается дальше, т.е. состояние его неустойчиво. Очевидно, что критическому состоянию соответствует случай

Fcr = U , или

l l

Fcr½ (v)2dz = ½ EIx(v)2dz , откуда получим:

0 0

l

EIx(v)2dz

0

Fcr = (4)

l

(v2dz

0

Для получения величины критической силы необходимо задаться формой изогнутой оси v = v(z), удовлетворяющей граничным условиям задачи. С математической точки зрения (4) является функционалом, т.е.отображением из множества функций определённого класса (дважды дифференцируемых и удовлетворяющих граничным условиям) в множество действительных чисел.

Пример 3. Найдём критическую силу для стержня, шарнирно опёртого

по обоим концам (Рис.5). Точное решение в этом

F случае известно: Fcr = 2EIx / l2 9,8696EIx / l2.

Если задаться функцией v = CSin(z/l), то

получим точное решение. Допустим, что мы

l этого не знаемем и попробуем аппроксимировать

z изогнутую ось полимиальной функцией. Возьмём

для начала полином второй степени:

Рис.5

v = Az2 + Bz + C (5)

Запишем граничные условия: 1) при z = 0: v = 0; 2) при z = l: v = 0. Подставляя в (5), получим:

С = 0; Al2 + Bl = 0 B = Al.

Дифференцируя (5) и учитывая полученные выражения для коэффициентов, имеем:

v = A(2z – l); v = 2A.

Характеристики

Тип файла
Документ
Размер
362,22 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6597
Авторов
на СтудИзбе
296
Средний доход
с одного платного файла
Обучение Подробнее