150517 (732757), страница 3

Файл №732757 150517 (Основные понятия и элементы линейных пассивных электрических цепей) 3 страница150517 (732757) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Полученные соотношения можно использовать для расчёта мгновенных значений напряжения и тока в последовательной цепи, питаемой от источника гармонической ЭДС.

Рассмотрим несколько примеров.

З адана ЭДС.

Необходимо определить i(t), uR(t), uL(t), uC(t)

З адано uC (t)

Анализ параллельной цепи переменного тока

При заданном гармоническом напряжении, ток в каждом элементе электрической цепи будет следующим:



Объединим эти элементы в параллельную цепь и зададим ЭДС источника. Неизвестный ток этого источника найдём в виде i=Im sin(ωt – φ)

Y – полная проводимость электрической цепи;

g – активная проводимость;

bLbC – реактивная проводимость.

Напряжения, сопротивления и проводимости R, L, C при синусоидальном токе i = Im sinωt

R

L

C

Таблица. Описание элементов R, L, C в комплексной форме.

Основные формулы для расчёта цепей с последовательным и параллельным соединением элементов R, L, C

Последовательное соединение

Параллельное соединение

Цель работы – исследование электрической цепи с последовательным соединением элементов R, L, C при различных соотношениях индуктивного и емкостного сопротивлений.

Общие сведения

В работе сначала определяются параметры катушки методом амперметра, вольтметра и ваттметра при питании напряжения частоты f1 = 50 Гц.

Схема для определения параметров катушки показана на рис. 1

Рис. 1

По изменённым значениям тока IK, напряжения UK и мощности PK можно определить полное, активное и индуктивное сопротивления катушки по формулам

, , , (1)

а также индуктивность и сдвиг по фазе между напряжением и током

; (2)

- угловая частота.

При последовательном соединении элементов R, L, C полное сопротивление цепи определяется выражением

(3)

где Rактивное сопротивление цепи;

x – реактивное сопротивление цепи.

Реактивное сопротивление цепи при этом определяется выражением

(4)

где xL = ωL – индуктивное сопротивление цепи;

xC = 1/ωC – емкостное сопротивление цепи.

Действующее значение тока в цепи определяется выражением

(5)

где Uдействующее значение напряжения на зажимах цепи.

При последовательном соединении R, L и C при определённых значениях xL и xC имеет место явление, называемое резонансом напряжения.

Резонансом напряжений называется такое состояние электрической цепи при последовательном соединении элементов R, L, C (рис. 2), когда сдвиг по фазе между напряжением на зажимах цепи и током в ней равен нулю, при этом xL = xC [1,2].


Напряжение на активном сопротивлении совпадает по фазе с током и равно

(6)

Напряжение на емкости отстаёт от тока по фазе на 900

(7)

Напряжение на индуктивности опережает ток на 900

(8)

Средняя мощность, расходуемая в цепи, определяется по формуле

(9)

Сдвиг фаз между напряжением на зажимах цепи и током в ней определяется выражениями:

; ; (10)

При резонансе cosφ = 1, а ток в цепи достигает максимального значения.

Если катушка индуктивности L имеет собственное сопротивление RL, то падение напряжения на ней равно

(11)

При этом полное активное сопротивление цепи будет равно сумме внешнего сопротивления R1 и собственного сопротивления катушки RL

Векторная диаграмма напряжений и тока в цепи при индуктивном характере нагрузок показана на рис. 3.

П ри резонансе φ = 0, и, следовательно, xL = xC. При постоянных L и C это равенство имеет место на резонансной частоте

или (12)

Резонансное значение тока в цепи

(13)

Рис. 3

Напряжение на активном сопротивлении R при резонансе равно напряжению источника питания.

(14)

Напряжение на емкости и на индуктивности при резонансе равны между собой

(15)

где - добротность контура;

- волновое или характеристическое сопротивление контура.

Средняя мощность при резонансе

(16)

Векторная диаграмма напряжений и токов при резонансе напряжений показана на рис. 4. Настроить цепь в резонансе с частотой источника питания можно также изменением индуктивности на ёмкости. Графики изменений тока в цепи, сдвига фаз и напряжений на элементах схемы при изменении частоты источника питания называются амплитудно-частотной (АЧХ) и фазо-частотной (ФЧХ) характеристиками контура и показаны на рис. 5.

Рис. 4 Рис. 5

Частотные характеристики могут быть построены по уравнениям (3) ÷ (12). Из выражения (5) следует

(17)

Максимумы UL и UC достигаются при частотах, отличных от резонансной частоты ωР. UL max наступает при частоте , а UC maxпри частоте

Частотная характеристика тока позволяет экспериментально определить добротность контура.

Если определить полосу частот , пропускаемых контуром на уровне , то добротность контура может быть найдена из выражения

(18)

На границах полосы пропускания сдвиг фаз между напряжением на зажимах цепи и током в ней составляет φ = ± 450.

Содержание работы

  1. Определение параметров катушки индуктивности методом амперметра, вольтметра и ваттметра при питании напряжением частоты 50 Гц.

  2. Исследование электрической цепи с последовательным соединением резистора, катушки индуктивности и конденсатора при различных соотношениях индуктивного и емкостного сопротивлений.

Описание лабораторной установки

Схема экспериментальной установки для исследования электрической цепи с последовательным соединением элементов R, L, C представлена на рис. 6.

Рис. 6

В её состав входят ЛАТР (лабораторный автотрансформатор), на выходных клеммах которого устанавливается напряжение U = 40 В.

Вольтметр V1 предназначен для измерения действующего значения напряжения, прикладываемого к электрической цепи; соответственно измеряет действующие значения напряжения на элементах R, L, C.

Амперметр А измеряет действующее значение тока в цепи. В качестве R1 используется реостат (Rреост = 30 Ом, 5 А), емкости С – магазин емкостей
(С = 1 мкФ ÷ 20 мкФ), индуктивности L – катушка индуктивности (с параметрами L и RL, определяемыми экспериментально).

Цель работы – исследование электрической цепи с параллельным соединением элементов R, L, C при различных соотношениях индуктивного и емкостного сопротивлений.

Общие сведения

При параллельном соединении элементов R, L, C (рис. 1) полная проводимость равна (1)


где g = 1/R – активная проводимость цепи;

b – реактивная проводимость цепи.

Реактивная проводимость цепи при этом определяется выражением
(2)

Рис. 1

Ток в цепи определяется выражением

(3)

Ток в активной проводимости совпадает с напряжением по фазе

(4)

Ток в ёмкости определяет напряжение по фазе на 900

(5)

Ток в индуктивности отстаёт от напряжения по фазе на 900

(6)

Средняя активность мощность, расходуемая в цепи

(7)

Сдвиг фаз между напряжением U на зажимах цепи и током I в ней определяется выражениями

(8)

(9)

Векторная диаграмма напряжения и токов в цепи показана на рис. 2 (при bC > bL).

Р езонансом токов называется такое состояние электрической цепи при параллельном включении элементов R, L, C, когда сдвиг по фазе между напряжением на зажимах цепи и током в ней равны нулю, при этом bC = bL, а ток в неразветвлённой цепи имеет наименьшее значение.

При постоянных значениях L и C резонансная частота определяется выражением

Рис. 2

(11)

Резонансное значение тока в цепи

(12)

Ток в активной проводимости при резонансе равен полному току

(13)

Токи в ёмкости и индуктивности при резонансе равны между собой

(14)

где - добротность контура;

- волновая и характеристическая проводимость контура.

Средняя мощность при резонансе

(15)

Векторная диаграмма напряжения и токов при резонансе токов показана на рис. 3.

Настроить цепь в резонанс с частотой источника питания можно изменением индуктивности или ёмкости, а также с помощью изменения частоты источника питания.

Характеристики

Тип файла
Документ
Размер
12,8 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6547
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее