150341 (732692)

Файл №732692 150341 (Инвариантность физических законов)150341 (732692)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Инвариантность физических законов

В последние два столетия в науке происходило бурное размежевание научных дисциплин. В физике помимо классической механики Ньютона появились электродинамика, термодинамика, ядерная физика, физика различных агрегатных состояний, специальная и общая теории относительности, квантовая механика и многое другое. Произошла узкая специализация. Физики перестали понимать друг друга. Теорию суперструн, например, понимают лишь насколько сот человек во всем мире. Чтобы профессионально разбираться в теории суперструн, нужно заниматься только теорией суперструн, на остальное просто не хватит времени.

Но не следует забывать, что столь разные научные дисциплины изучают одну и ту же физическую реальность – материю. Наука, а особенно физика, вплотную подошла к тому рубежу, когда дальнейшее развитие возможно только путем интегрирования (синтеза) различных научных направлений.

Рассмотрим для начала периодическую систему измерения физических величин, являющуюся первым шагом в этом направлении.

В отличие от международной системы единиц СИ, имеющей 7 основных и 2 дополнительные единицы измерения, в периодической системе единиц измерения используется одна единица – метр (табл.1). Переход к размерностям периодической системы измерения осуществляется по правилам:

(1.1)

(1.2)

Где: L, T и М – размерности длины, времени и массы соответственно в системе СИ.

Размерности всех остальных физических величин установлены на основании так называемой «пи-теоремы», утверждающей, что любая верная зависимость между физическими величинами с точностью до постоянного безразмерного множителя соответствует какому-либо физическому закону.

Чтобы ввести новую размерность какой-либо физической величины, нужно:

• подобрать формулу, содержащую эту величину, в которой размерности всех других величин известны;

• алгебраически найти из формулы выражение этой величины;

• в полученное выражение подставить известные размерности физических величин;

• выполнить требуемые алгебраические действия над размерностями;

• принять полученный результат как искомую размерность.

«Пи-теорема» позволяет не только устанавливать размерности физических величин, но и выводить физические законы. Рассмотрим для примера задачу о гравитационной неустойчивости среды.

Известно, что как только длина волны звукового возмущения оказывается больше некоторого критического значения, силы упругости (давление газа) не в состоянии вернуть частицы среды в первоначальное состояние. Требуется установить зависимость между физическими величинами.

Имеем физические величины:

- длина фрагментов, на которые распадается однородная бесконечно протяженная среда;

- плотность среды;

• a - скорость звука в среде;

• G - гравитационная постоянная.

В системе СИ физические величины будут иметь размерность:

~ L ; ~ ; a~ ; G ~

Из , и составляем безразмерный комплекс:

,

где: и - неизвестные показатели степеней.

Таким образом:

Так как П по определению величина безразмерная, то получаем систему уравнений:

Решением системы будет:

; ,

следовательно,

Откуда находим:

(1.3)

Формула (1.3) с точностью до постоянного безразмерного множителя описывает известный критерий Джинса. В точной формуле .

Формула (1.3) удовлетворяет размерностям абсолютной системы измерения физических величин. Действительно, входящие в (1.3) физические величины имеют размерности:

~ ; ~ ; ~ ; ~

Подставив размерности абсолютной системы в (1.3), получим:

Анализ периодической системы измерения физических величин показывает, что механическая сила, постоянная Планка, электрическое напряжение и энтропия имеют одинаковую размерность: . Это означает, что законы механики, квантовой механики, электродинамики и термодинамики – инвариантны. Например, второй закон Ньютона и закон Ома для участка электрической цепи имеют одинаковую формальную запись:

~ (1.4)

~ (1.5)

При больших скоростях движения во второй закон Ньютона (1.4) вводится переменный безразмерный множитель специальной теории относительности:

Если такой же множитель ввести в закон Ома (1.5) , то получим:

(1.6)

Согласно (1,6) закон Ома допускает появление сверхпроводимости, так как при низких температурах может принимать значение, близкое к нулю. Абсолютная система измерения играет в физике такую же роль, какую в химии играет периодическая система элементов Менделеева. Если бы в физике с самого начала применялась абсолютная система измерения физических величин, то явление сверхпроводимости наверняка было бы предсказано вначале теоретически, а уже потом обнаружено экспериментально, а не наоборот.

С другой стороны, в законе Ома для полной электрической цепи берется полное сопротивление цепи, включающее сопротивление источника тока. Значит, во втором законе Ньютона следует тоже брать полное ускорение, включающее обычное ускорение и некоторое дополнительное ускорение. Можно показать, что таким ускорением является ускорение расширения Вселенной. Замерить ускорение расширения современные технические средства не могут. Применим для решения этой задачи абсолютную систему измерения физических величин.

Вполне естественно предположить, что ускорение расширения Вселенной зависит от расстояния между космическими объектами и от скорости расширения Вселенной . Решение задачи изложенным выше методом дает формулу:

(1.7)

В точной формуле

Инвариантность физических законов позволяет уточнить физическую сущность многих физических понятий. Одно из таких «темных» понятий – понятие энтропия. Так как энтропия и сила – это физические синонимы, то энтропию, вопреки существующему заблуждению, можно не только вычислить, но и измерить и она может быть как положительной, так и отрицательной.

Рассмотрим для примера металлическую спиральную пружину, которую можно считать механической системой атомов кристаллической решетки металла. Если сжать пружину, то кристаллическая решетка деформируется и создаст силы упругости, которые всегда можно измерить. Сила упругости пружины будет той самой механической энтропией. Но пружину можно и растянуть, тогда сила упругости изменит знак, а значит, изменится и знак энтропии.

Пружину можно представить и одним из элементов гравитационной системы, вторым элементом которой является наша Земля. Гравитационной энтропией такой системы будет сила притяжения. Разделив силу притяжения на массу пружины, получим гравитационную плотность энтропии. Гравитационная плотность энтропии – это ускорение свободного падения.

Наконец, в соответствии с размерностями физических величин в абсолютной системе измерения, энтропия газа – это сила, с которой газ давит на стенки сосуда, в который он заключен. Удельная газовая энтропия – это просто давление газа.

Важные сведения о внутреннем устройстве элементарных частиц можно получить, исходя из инвариантности законов электродинамики и гидродинамики, а инвариантность законов термодинамики и теории информации позволяет наполнить физическим содержанием уравнения теории информации.

В известной притче о трех слепых мудрецах, изучающих слона, говорится, что один из них, имеющий доступ к ногам, утверждает, что слон – это четыре столба, другой, имеющий доступ к хоботу, утверждает, что слон – это толстый шланг, а третий, ухватившись за хвост – утверждает, что слон – это большой червяк. И только четвертый, зрячий мудрец, может объяснить им, что они изучают одного и того же слона. По аналогии, можно сказать, что до введения абсолютной системы измерения физических величин физики не догадывались, что механика, квантовая механика, электродинамика и термодинамика изучают одни и те же групповые законы пространственно – временных преобразований.

Инвариантность физических законов объясняется тем, что размерности физических величин образуют математическую группу. Действительно, можно показать, что размерности образуют операционные множества, в которых действуют процедуры умножения, а также выполняются условия замкнутости, имеются тождественный и обратный элементы, и они обладают свойством ассоциативности, то есть выполняются 4 обязательные для групп аксиомы. Теория групп призвана найти все логические следствия из этих аксиом. Теория групп – это наведение порядка в математическом языке.

Различные уравнения физики имеют одну и ту же группу, поэтому становится возможным вместо этих уравнений рассмотреть соответствующую им группу и распространить полученные законы на решение какой-либо частной задачи любого из разделов физики. Это экономит средства и открывает новые возможности математики.

Физические элементы в группе обладают важным свойством, состоящим в том, что производная по времени от физической величины меньшей размерности является физической величиной большей размерности, а интеграл по времени от физической величины большей размерности есть физическая величина меньшей размерности. Например, в механике производная от мощности – это энергия, от энергии – сила, от силы – импульс, от импульса – ускорение, от ускорения – скорость, а от скорости – расстояние. В электродинамике интеграл от величины заряда – это электрический ток, от тока – электрическое сопротивление, от сопротивления – магнитный момент, от магнитного момента – электрическая сила, от силы – электрическая энергия, а от энергии – электрическая мощность.

В абсолютной системе измерения физических величин не оказалось физических величин с размерностью более 7. Все дело в том, что физика рассматривает либо закрытые (замкнутые системы), и тогда соблюдается закон сохранения энергии

~ (1.8)

Характеристики

Тип файла
Документ
Размер
1,37 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6765
Авторов
на СтудИзбе
282
Средний доход
с одного платного файла
Обучение Подробнее