150150 (732612)

Файл №732612 150150 (Влияние граничных условий на критическую температуру неоднородных сверхпроводящих мезоструктур)150150 (732612)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Реферат

Влияние граничных условий на критическую температуру неоднородных сверхпроводящих мезоструктур

Исследования неоднородных сверхпроводящих мезоструктур, в которых сверхпроводимость обусловлена наличием эффекта близости, представляют большой интерес как с прикладной, так и с фундаментальной точек зрения.

В данной работе рассматривается проблема влияния внешних границ на критическую температуру структур типа сверхпроводник/нормальный металл (S/N) и сверхпроводник/ферромагнетик (S/F). В качестве структур типа S/N были рассмотрены трехслойные образцы вида N/S/N и S/N/S. В качестве структур S/F типа исследовались бислойные S/F структуры.

Измерения для многослойных структур S/N типа проводились на трехслойных образцах Cu/Nb/Cu и Nb/Cu/Nb, детали приготовления приведены в [1]. Измерения для структур S/F типа были выполнены на образцах Nb/PdNi детали приготовления описаны в [2].

Критические состояния для структур типа S/F и S/N в отсутствии внешнего магнитного поля без учета парамагнитного и спин-орбитального взаимодействия, могут быть описаны с помощью уравнений Узаделя [3]. В качестве условий сшивания на плоскостях контакта сверхпроводящего и несверхпроводящего слоев использовались условия Куприянова - Лукичева [4]. Метод решения приведен в [5].

Из [5] следует, что решение граничной задачи зависит от следующих параметров. Для S/N структур – от критической температуры массивного сверхпроводящего материала (Nb) TS, частоты Дебая D, длин когерентности в сверхпроводящем и несверхпроводящем слоях:

,

,

где DS, DN(F) – постоянные диффузии сверхпроводящего и нормального (ферромагнитного) металлов; параметра прозрачности S/N(F) границы , и параметра

,

где S, N(F) – низкотемпературные (при T = 10 K) удельные сопротивления сверхпроводящего и нормального (ферромагнитного) металлов, соответственно. В случае S/F структур, кроме указанных выше параметров, подгоночным также оказывается еще один параметр – энергия обменного взаимодействия Eex.

Дебаевская частота, являясь параметром обрезания, должна быть достаточно большой, чтобы не влиять на критические характеристики сверхпроводника. Это условие с большим запасом выполняется для исследуемых материалов. В частности, для Nb D = 275 K. Для определения длины когерентности трехслойных S/N структур S = 6.4 нм были выполнены отдельные измерения Hc2(T). Для бислойных S/F структур получено S = 6 нм [2].

Значение параметра p = 2.77 в рассматриваемом экспериментальном случае для Cu/Nb/Cu определяется вполне однозначно. Для структуры Nb/Cu/Nb оказывается возможным получить лишь оценку, p 2.0 – 8.5. Для структуры Nb/PdNi согласно [2] – p 0.1 – 1.29.

Параметр TS достаточно уверенно можно задать для N/S/N, сравнивая асимптотики экспериментальной и теоретической зависимостей Tc(dS); в результате для Cu/Nb/Cu имеем TS 9 K. Для Nb/Cu/Nb можно установить лишь интервал допустимых значений 7.5 K < TS < 9.2 K. Для Nb/PdNi из асимптотического значения Tc(dS) при Tc→ ∞ получено - TS 8.8 K. Для структуры Nb/PdNi согласно [2] получено значение Eex = 230 К.

Параметры и N для структуры N/S/N функционально связаны т.е. существует кривая (N), все точки которой дают одну и ту же зависимость Tc(dS) (вставка к рисунку 1a). На рисунке 1a белыми квадратами представлена зависимость, рассчитанная со значениями подгоночных параметров TS = 9 K, S = 6.4 нм, p = 2.77, = 0.98, N = 34 нм, экспериментальные данные обозначены черными точками.

Попытаемся теперь воспроизвести экспериментальную зависимость (черные точки на рис. 1b) Tc(dN) для структуры Nb/Cu/Nb с набором параметров, определенных в задаче о восстановлении зависимости Tc(dS). Оказывается, что при заданных p = 2.77, TS = 9 K не существует значений ( ,N), воспроизводящих экспериментальную зависимость Tc(dN). На рисунке 1b треугольниками острием вниз представлена теоретическая кривая Tc(dN), построенная по параметрам = 0.98, N = 34 нм, – видим полное несоответствие экспериментальным данным по структуре Nb/Cu/Nb. Воспроизвести экспериментальную зависимость Tc(dN) возможно, одновременно изменяя значения подгоночных параметров p, TS. На рисунке 1b треугольниками острием вверх показана кривая, рассчитанная со значениями подгоночных параметров = 0.98, N = 34 нм, p = 2.77, характеризующих структуру Cu/Nb/Cu, и при TS = 8 K; однако хорошее согласие теории и эксперимента достигается при этом существенным изменением длины когерентности: S = 8 нм. На том же рисунке белыми квадратами обозначена теоретическая зависимость Tc(dN), рассчитанная с параметрами структуры Cu/Nb/Cu S = 6.4 нм, = 0.98, N = 34 нм, и TS = 9 K, и с подгонкой параметра p; его значение, p = 9.8, выходит за границы интервала допустимых значений. Был получен также набор возможных значений параметров (TS, p), восстанавливающий зависимость Tc(dN) для S/N/S структур.

Рисунок 1. Зависимости Tc(dS) (a) и Tc(dN) (b) для трехслойных S/N структур.

На рисунке 2a линией обозначена теоретическая зависимость Tc(dS) для бислойных S/F структур, рассчитанная со значениями подгоночных параметров: Eex = 230 К, TS = 8.8 K, S = 6 нм, p = 0.29, =3.2, lF = 4 нм, где lF – длина свободного пробега электрона в ферромагнитном слое, экспериментальные данные обозначены черными точками. Зафиксировав первые четыре параметра, можно получить набор параметров ( , lF), значения которых восстанавливают зависимость Tc(dS) (вставка к рис. 2a, черные точки). На рисунке 2b линией изображена теоретическая зависимость Tc(dF), экспериментальные данные – черные точки. Область значений возможных подгоночных параметров ( , lF) восстанавливающих зависимость Tc(dF) выделена на вставке к рис. 2a (белые точки).

Рисунок 2. Зависимости Tc(dS) (a) и Tc(dF) (b) для бислойных S/F структур.

Полученное различие в материальных параметрах, описывающих свойства S/N/S и N/S/N структур, в первую очередь обусловлено различием свойств внутреннего S слоя в Cu/Nb/Cu и внешних S слоев в Nb/Cu/Nb образцах. Неоднородность внешних поверхностей структуры S/N/S оказывает сильное влияние на ее характеристики. Фактически вместо трехслойной S/N/S мы имеем пятислойную многослойную структуру S/S/N/S/S, в которой свойства внешнего слоя S точно не известны, и могут изменяться неконтролируемым образом для разных образцов. С практической точки зрения это значит, что для идентификации параметров многослойных структур вида N/S/…/S/N нельзя использовать S/N/S-структуры. Понятен способ преодоления этих сложностей: вместо структур S/N/S следует использовать структуры N/S/N/S/N. Расчеты, проведенные для структур S/F типа полностью подтверждают результат, полученный для структур типа S/N/S и N/S/N. Т.е. в случае бислойных структур Nb/PdNi набор значений подгоночных параметров, восстанавливающих зависимость Tc(dF), полностью входит в диапазон значений подгоночных параметров для Tc(dS).

Воздействие концентрированных потоков энергии на материалы является на сегодняшний день активно изучаемым вопросом физики твердого тела и физического материаловедения [1]. Среди широкого спектра различного вида высокоэнергетических воздействий особый интерес с точки зрения модифицирования структурно-фазового состояния и свойств приповерхностных слоев представляет воздействие компрессионными плазменными потоками. Особенностью энергетических потоков данного рода является сочетание квазистационарности воздействия и высокой плотности передаваемой энергии [2]. Обработка компрессионными плазменными потоками может проводиться на различного рода объектах, одним из которых является система «металлическое покрытие-кремниевая подложка». Наиболее важной научной и практической задачей является изучение возможости образования приповерхностных слоев силицидов металлов в результате плазменного воздействия, особенностей их состава и микроструктуры [3].

В настоящей работе исследовалась возможность силицидообразования в системе «никелевое покрытие-кремний» в результате воздействия компрессионных плазменных потоков, а также их структура и распределение в приповерхностном слое.

В качестве объекта исследования использовалась монокристаллическая пластина кремния (кристаллографическая ориентация (100)). Покрытие никеля толщиной 4 мкм наносилось методом химического осаждения. Согласно диаграмме состояния [4], в системе никель-кремний возможно образование ряда силицидов, обогащенных никелем (Ni3Si, Ni2Si, Ni31Si12, Ni3Si2), моносилицида NiSi и дисилицида NiSi2.

Генерирование компрессионных плазменных потоков проводилось в магнитоплазменном компрессоре компактной геометрии. В качестве плазмообразующего вещества использовались азот (давление ~400 Па). Воздействие проводилось одним импульсом и серией из трех импульсов. Продолжительность импульса составляла ~100 мкс, давление потока – 1,5 МПа, температура – 3 эВ, плотность поглощенной энергии – 8-13 Дж/см2.

Фазовый состав обработанной системы никель-кремний исследовался методом рентгеноструктурного анализа на дифрактометре ДРОН-4-13 при фокусировке по Брэггу-Брентано в излучении Cu Kα. Исследование элементного состава проводилось методом Оже-электронной спектроскопии на установке PHI-660 фирмы Perkin Elmer. Регистрация оже-электронов производилась при травлении образцов ионами аргона энергией 3 кВ. Микроструктура обработанной системы, а также планарное и латеральное распределение элементов изучались методом растровой электронной микроскопии и рентгеноспектрального микроанализа на микроскопе LEO1455VP фирмы “Karl Zeiss” с энергодисперсионным рентгеноспектральным микроанализатором Rontec.

Исследования элементного состава обработанной системы показали, что высокоэнергетическое плазменное воздействие приводит к перераспределению компонент покрытия и подложки. Увеличение количества импульсов вызывает более глубокое проникновение никеля. Согласно результатам фазового анализа, плазменная обработка ведет к образованию силицидов. При увеличении плотности энергии потока плазмы практически весь никель вступает в реакции силицидообразования вследствие более интенсивного перемешивания. В результате воздействия одним импульсом формируются силициды NiSi, NiSi2, а в случае воздействия серией из трех импульсов – Ni2Si, NiSi, NiSi2. Совместное образование моно- и дисилицида никеля обусловлено их близкими энергиями образования (~85 кДж/моль), наиболее низкими среди всех силицидов никеля [5]. Формирование силицида Ni2Si и увеличение глубины проникновения никеля при воздействии серией импульсов связано с интенсивным взаимным диффузионным перемешиванием никеля и кремния при каждом последующем плазменном импульсе.

Результаты исследования морфологии поверхности обработанных образцов и их поперечного сечения выявили, что микрорельеф характерен для быстрозатвердевшей жидкости. Таким образом, высокоэнергетическое воздействие компрессионного плазменного потока приводит к расплавлению покрытия никеля и части кремниевой подложки, перемешиванию их компонент за счет жидкофазной диффузии и конвекции. Толщина переплавленного слоя составляет 10-15 мкм.

Рис.3 Микрофотография дендритной структуры (а) и распределения интенсивностей характеристических рентгеновских излучений кремния и никеля вдоль линии АА (б) системы Ni/Si(100), обработанной одним импульсом при плотности энергии потока 8 Дж/см2

В приповерхностном слое было обнаружено формирование дендритной структуры. Характерный размер дендритов составляет 2-20 мкм. Преимущественная ориентация дендритов соответствует направлению (100). Особенностью пространственного распределения элементов в дендритных областях является повышенное содержание кремния внутри дендритов (рис. 1). Формирование данного вида структуры описывается в рамках модели концентрационного переохлаждения [6]. При быстром затвердевании кремния происходит вытеснение никеля за границу кристаллизации. В результате этого образуется область жидкости, обогащенной никелем, которая, согласно диаграмме состояния, имеет меньшую температуру кристаллизации, т. е. имеет место переохлаждение. При этом любой случайный выступ на границе жидкой и твердой фаз, попадающий в область переохлажденной жидкости, становится устойчивым образованием и при дальнейшем развитии перерастает в дендрит. Ориентация дендритов, главным образом, определяется направлением движения фронта кристаллизации. Увеличение плотности энергии плазменного потока приводит к более интенсивному образованию дендритов ввиду увеличения градиента температуры и скорости кристаллизации. Рост дендрита сопровождается диффузией никеля за границу кристаллизации, вследствие чего в междендритных областях, закристаллизовавшихся позднее, концентрация никеля выше, чем внутри дендритов. В данных областях наиболее вероятно образование силицидов, обогащенных никелем, а также моносилицида, в то время как формирование дисилицида наиболее интенсивно происходит внутри дендритов, а также возле их границ.

Характеристики

Тип файла
Документ
Размер
2,82 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6485
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее