149937 (732473), страница 4
Текст из файла (страница 4)
я2- 22 -я2электронной схемой. Часто используются приборы с двумя рядомя2расположенными одинаковыми чувствительными элементами, один изя2которых принимает сигнал, а другой остается неосвещенным. Вя2этом случае используется мостовая схема, позволяющая уменьшитья2влияние изменений температуры окружающей среды. Чувствительныея2элементы неохлаждаемых болометров изготовляются из композицийя2оксидов металлов, обладающих полупроводниковыми свойствами,я2или из тонких пленок металлов. В охлаждаемых болометрахя2используются элементы из германия и кремния, легированные при-я2месями. Для повышения коэффициента поглощения излучения на по-я2верхность ЧЭ наносится слой черни. Спектральная областья2чувствительности болометра определяется свойствами черни ия2прозрачностью окна прибора, его можно считать неселективным вя2широкой области спектра. Недостатком болометров является боль-я2шая инертность с характерным временем порядка 1мс. По чувстви-я2тельности к слабым сигналам неохлаждаемые болометры уступаютя2фотоэлектрическим ФП на 2-3 порядка. Полупроводниковые боло-я2метры, охлаждаемые до гелиевых температур, имеют очень высокуюя2обнаружительную способность. я2Важным фактором, определяющим качество болометра, являетсяя2термический коэффициент сопротивления материала ЧЭ. Были раз-я2работаны сверхпроводящие болометры с очень резкой зависимостьюя2сопротивления от температуры в области сверхпроводящего пере-я2хода. я2Пироэлектрические ФП (ПФП) основаны на температурной за-я2висимости поляризации сегнетоэлектрических кристаллов, которыея2обладают постоянной поляризацией. Сигнал ПФП состоит в измене-я2нии плотности заряда на поверхности образца при нагревании.я2Образец пироэлектрика в виде пластинки с электродами на граняхя2подобен заряженному конденсатору. Нагревание пластинки сигна-я2лом излучения изменяет заряд и во внешней цепи проходит им-я2пульс тока. Если сигнал не модулирован, то тока во внешней це-я2пи не будет, т.е. ПФП реагирует только на изменение сигнала.я2ЧЭ для ПФП делаются обычно из триглицинсульфата или танталатая2лития. ПФП имеют большую инертность, чем фотоэлектрические ФП.я2Ия0мя2ется возможностья0 я2 повысить быстродействие ПФП ценой сниженияя2чувствительности. я_я22. Материалы, используемые при изготовлении ФЧЭ фоторе- я_я2зисторов и фотодиодов. я2Успехи современной микроэлектроники в основном связаны ся2хорошо разработанной технологией кремния и отчасти арсенидая2галлия. Для области 3-5мкм одним из основных материалов счита-я2ют антимонид индия. Для области 8-12мкм оптимальным материаломя2является твердый раствор теллуридов кадмия и ртути с составомя20.2 по кадмию. я2В среднем ИК-диапазоне до 10мкм можно использовать рядя2собственных полупроводников, а в дальнем - примесные полупро-я2водники. В области 8-12мкм пригодны собственный полупроводникя2КРТ и примесный германий с ртутью. я_я23.Конструкция фотоэлектрических полупроводниковых приемников я_я2излучения(ФЭПП). я2Одноэлементные неохлаждаемые ФЭПП в простейшем случае нея2имеют герметизирующего корпуса. ФЧЭ защищается от внешних воз-я2действий тонкой пластинкой, на которую наносится отражающеея2покрытие, заставляющее излучение проходить через чувствитель-я2ный слой дважды. Герметизация достигается с помощью полимерно-я2го герметика и обеспечивает сохранение свойств ФЧЭ при дли-я2
я2- 23 -я2тельном пребывании во влажной атмосфере. Более сложные ФППя2имеют металлический корпус с окном. Для устранения потерь ная2отражение на окна наносится антиотражающее покрытие. Иногда кя2ФЧЭ приклеивается иммерсионная линза. Она позволяет собратья2излучение на ФЧЭ малого размера, имеющий меньшие шумы и боль-я2шую чувствительность. Фотодиоды для ВОЛС имеют для ввода излу-я2чения короткий отрезок световода, который стыкуется с линией ся2помощью разъема. я_ГЛАВА 8. я_я21. ВАХ фотодиода. Структура фотодиода. Лавинный фотодиод. я2При освещении p-n перехода излучением, вызывающем переходыя2зона-зона, в каждой области происходит генерация свободныхя2носителей заряда (фотоносителей), которые не отличаются отя2"темновых", созданных тепловым движением. Они также "скатыва-я2ются" с потенциального барьера в сою область, где становятсяя2избыточными. Поэтому реакцией кристалла на фотоионизирующуюя2радиацию является рост тока насыщения и формула для ВАХ прини-я2мает видя2где Iф - фототок. Величина Iф связана с плотностью мощностия2монохроматического фотоионизирующего излучения формулойя2где - квантовая эффективность, т.е. доля фотонов, создав-я2ших фотоносители в области настолько близкой к ОПЗ и p-n пере-я2ходу, чтобы принять участие в токе неосновных носителей черезя2переход. я2Ампер-ваттная чувствительность для фотодиодов определяетсяя2как фототок, вызванный излучением с мощностью равной единице.я2Учитывая (8.1): я2ВАХ фотодиода изображена на рис 8.1. Обратим внимание ная2две возможности измерения мощности оптического сигнала. Перваяя2состоит в режиме обратного смещения с выходом на ток насыщенияя2и измерении разности токов при освещении и без него, а втораяя2- в измерении напряжения без внешнего смещения. Первый режимя2называется фотодиодным, а второй фотовольтаическим. При фото-я2диодном режиме кристалл действует аналогично фоторезитору, ая2при фотовольтаическом аналогично фотоэлементу - источнику ЭДС.я2Величину фотоЭДС Eф легко вычислить, положив в формуле ВАХя2I=0. В результатея2
я2- 24 -я2Если , то и связаны линейной зависимостью. Как ия2всякий источник напряжения, фотодиод имеет внутреннее сопро-я2тивление, на котором получается падение напряжения, поэтомуя2фотовольтаический режим в чистом виде реализуется при большомя2внешнем сопротивлении. Фотодиод следует делать на основея2пластинки p-типа и создавать на одной из ее поверхностей тон-я2кий слой n-типа. Излучение должно входить через слой n-типа ия2поглощаться в материале p-типа. я2Многие фотодиоды кроме высокой квантовой эффективностия2должны иметь малую инерционность, иначе говоря, большую ширинуя2информационной полосы частот. За последние десятилетия былия2разработаны лавинные фотодиоды(ЛФД), представляющие собой по-я2лупроводниковые аналоги вакуумных ФЭУ. В отличие от обычныхя2фотодиодов они имеют внутреннее усиление сигнала, которое соз-я2дается ударной ионизацией полупроводника ускоренными электро-я2нами или дырками. Для этого в структуре ЛФД должны иметься по-я2ля с напряженностью порядка 100кВ/см. я_я22. Шумы фотоэлектрических полупроводниковых приемников я_я2излучения (ФЭПП).Мощность эквивалентная шуму (МЭШ). я2Существуют два вида случайных процессов, связанных с кван-я2товой природой излучения, а именно, фотонный шум и тепловойя2шум резисторов. Есть также дробовой и генерационно-рекомбина-я2ционный шумы, существующие как при наличии освещенности фото-я2чувствительного элемента ФЭПП, так и без нее. Кроме этих шумовя2существует Фликкер-шум (1/f-шум), возникающий в результатея2различных явлений, которые можно в той или иной степени устра-я2нить технологическими приемами. я2Определим МЭШ. Начнем с радиационного шума. Обозначив МЭШя2через имеем в соответствием с формулой Шоткия2Если бы измерительная схема, включая фотоприемник, не имелая2шумов, то, при единичной ширине полосы, пропускаемой электрон-я2ным трактом, можно было бы зарегистрировать сигнал из несколь-я2ких фотонов. Фоторезистор, не имеющий темнового тока, но даю-я2щий усиление фототока по сравнению с фотодиодом вя2раз, имеет МЭШ в два раза большую,чем фотодиод. Это видно изя2вычисления, аналогичного проведенному для фотодиода :я2Перейдем к радиационному шуму, вызванному внешней подсветкойя2излучением фона с мощностью Pф. я2Повторяя те же вычисления получим для фотодиодая2Выразив мощность фоновой подсветки формулойя2где Eф - плотность потока фотонов фона и A - площадь ФЧЭ, по-я2лучим формулу для МЭШ фотодиода при ограничении флуктуации мо-я2нохроматической фоновой подсветки я2Аналогичная формула для фоторезистора, имеющего фотоэлект-я2рическое усиление G имеет видя2
я2- 25 -я2Коэффициент фотоэлектрического усиления сократился, а МЭШ ока-я2залась в корень из 2 раз больше, чем доя фотодиода. я2При использовании ФЭПП в аппаратуре космического назначе-я2ния плотность потока фотонов фона может быть снижена на многоя2порядков и доминируюшим становится тепловой шум. Выполнивя2простое вычисление по той же схеме получим формулу для МЭШ прия2ограничении тепловым шумом:я2где R и T - сопротивление и температура ФЧЭ. я2При ограничении флуктуациями темнового тока фоторезисторая2МЭШ вычисляется по формулея2в которую входит коэффициент фотоэлектрического усиления G. Вя2предыдущих формулах он сокращался, что означало одинаковоея2усиление фототока и его флуктуаций, но здесь он способствуетя2снижению МЭШ. я2Надо заметить, что фотоэлектрическое усиление полезно не-я2зависимо от влияния на МЭШ, т.к. повышение сигнала при наличиия2помех всегда желательно. я_я23. Обнаружительная способность. я2Понятие о МЭШ очень хорошо характеризует качество ФЭПП, ноя2более целесооразно выбрать новую меру качества так, чтобы вя2нее не входили и . Это достигается введением понятия обя2удельной обнаружительной способностия2Исключение и равносильно условию, что A=1кв.см и я2= 1Гц. я2Как видно из определения, величина измеряется едини-я2цами . Используя формулы для МЭШ получим: я2- при ограничении фотодиода флуктуациями фона в пределахя2телесного угла : я2- при ограничении фоторезистора флуктуациями фона в пределахя2телесного угла : я2- при ограничении тепловым шумом :я2где произведение - простая мера качества p-n переходов. я2Для идеального ФЭПП вычисляется по формулея2где введено , - предельная длина волны (квантовая эф-я2фективность равна 1 во всем диапазоне длин волн от0 до ия2равна нулю при более длинных волнах). я2Для теплового приемника излучения имеем я_я24.Гетеродинный (когерентный) прием излучения оптического я_я2диапазона. я2ФЭПП,рассмотренные в главе 8, пригодны для приема излуче-я2
я2- 26 -я2ния независимо от степени когерентности.Но одночастотный светя2во всех отношениях аналогичен одночастотному излучению радио-я2диапазона и для его приема можно применять метод гетеродиниро-я2вания.В отличие от гетеродинирования обычный метод получиля2название прямого детектирования.Напомним ,что идея гетеродини-я2рования состоит в смещении двух гармонических сигналов, разли-я2чающихся по частоте, на квадратичном детекторе. Один из нихя2подлежит приему, а другой, более мощный, создается местным ге-я2нератором - гетеродином, входящим в приемное устройство. Прия2смещении возникает разностная частота, сигнал которой поступа-я2ет в электронный тракт усиления и обработки. В оптическом диа-я2пазоне квадратичным детектором служит ФЭПП с достаточно высо-я2ким быстродействием, а процесс смещения осуществляется простойя2суперпозицией сигналов на его ФЧЭ. я2При гетеродинном приеме МЭШ пропорциональна (1), а не (2),я2как при прямом детектировании , и равна (3). я2Гетеродинный прием имеет существенные принципиальные преи-я2мущества по сравнению с прямым детектированием, но его реали-я2зация обычно встречает трудности согласования волновых фронтовя2сигнала и гетеродина. я_ГЛАВА 9. я_Фотоэлектрические приемники изображения. я2К приемникам оптического изображения относятся электрон-я2но-оптические преобразователи (ЭОП), полупроводниковые матрицыя2с системой считывания сигналов с отдельных элементов и вакуум-я2ные телевизионные трубку со считыванием сигнала электроннымя2лучом. я2ЭОП предназначены для усиления и визуализации изображенийя2слабо светящихся объектов, недоступных прямому наблюдению че-я2ловеческим глазом. ЭОП служит основой приборов ночного виденияя2и многочисленных видов аппаратуры научного и народнохо-я2зяйственного назначения. Основная идея преобразования и усиле-я2ния изображения состоит в превращении оптического изображенияя2в электронное и затем снова в оптическое. Если исходное изоб-я2ражение было невидимым - ультрафиолетовым или инфракрасным доя2длины волны 1 мкм -, то оно преобразуется в видимое. Усилениея2получается путем ускорения электронов сильным электрическимя2полем. Эти процессы были впервые реализованы в 1934 г., в при-я2боре , получившем название "стакан Холста" /см. рис. 9.1/. я2Полупроводниковые фотоматрицы для телевидения и тепловиде-я2ния представляют собой приборы с зарядовой связью (ПЗС) .я2Основная идея ПЗС состоит в накоплении фотоэлектронов (или фо-я2тодырок) в миниатюрном конденсаторе со структурой ме-я2талл-окись-полупроводник (МОП) и передаче накопленного зарядая2по цепочке таких конденсаторов, управляемых электрическими им-я2пульсами. Заряд каждого конденсатора соответствует освещен-я2ности проектируемого на него элемента изображения (пикселя).я2Пройдя по цепочке конденсатора этот заряд, несущий информациюя2о данном пикселе, попадает в общий усилитель и далее служитя2видеосигналом. я2ПЗС фотоматрица по пороговой освещенности значительноя2уступает ЭОП, способному регистрировать отдельные фотоны . По-я2этому в последние годы были созданы гибридные системы с ЭОП ная2входе и стыкованной с ним ПЗС фотоматрицей.я2
я2- 27 - я_ГЛАВА 10. я_Интерференция квазимонохроматического света. я_Многолучевая интерференция. я_я21. Закон интерференции квазимонохроматического света. я2Излучение, удовлетворяющее условию , где цент-я2ральная частота полосы, называется квазимонохроматическим вя2отличие от идеального монохроматического одночастотного излу-я2чения. Закон интерференции одночастотного света легко получа-я2ется суммированием колебаний в двух интерферирующих волнах.я2Представим себе, что мы наблюдаем интерференцию при помощия2интерферометра Маха-Цендера /рис. 10.1/, в котором исходнаяя2волна разделяется на две светоделителем, причем для одной изя2них вводится временная задержка , соответствующая разнос-я2ти хода а затем обе волны сводятся вместе. Не учитываяя2векторный характер световых колебаний можем записать интенсив-я2ность результирующей волны в видея2гдея2Соответствующие интенсивности равныя2отсюда следует, чтоя2Заметим, что первые два члена дают "фотометрическое" сложение,я2а третье описывает интерференцию. Интерференционная картиная2будет представлять собой систему светлых и темных линий, сое-я2диняющих те точки, в которых результат интерференции одинаков.я2Контраст интерференционной картины (или видность) определяетсяя2по формулея2Подставив значения и в соответствии с закономя2интерференции, получим, что С=1 или 100% . я2Закон интерференции для квазимонохроматического света по-я2лучается по той же схеме, как для одночастотного света. Прия2этом будем считать, что процессы изменения амплитуд со време-я2нем стационарны, то есть результаты усреднения по времени нея2зависят от начала отсчета времени. Вычисление даетя2
я2- 28 -я2Интерференционный член имеет видя2где представляет собой функцию взаимнойя2корреляции величин и . я2Функция описывает степень связанности двух изменяю-я2щихся случайно величин. Нормированная функция взаимной корре-я2ляциия2Физический смысл легко понять, рассмотрев интерференциюя2двух волн с одинаковой интенсивностью и вычислив видность ин-я2терференционной картины. Оказывается, что С= .я2называют степенью когерентности. Для идеального одночастотногоя2света она равна 1,при фотометрическом сложении равна 0,а дляя2монохроматического света имеет промежуточное значение. я_я22.Теорема ван-Ситтерта-Цернике. я2Можно ли наблюдать интерференционную картину от источника,я2излучение которого заведомо некогерентно, например, от Солнцая2или любого нагретого тела ? Этот вопрос получил положительныйя2ответ в исторически первом интерференционном опыте Юнга, в ко-я2тором наблюдалась интерференционная картина при суперпозициия2волн от двух дырок, проколотых в непрозрачном экранея2/рис.10.3/.Наша задача будет состоять в теории опыта Юнга,ре-я2зультатом которой является теорема ван-Ситтерта-Цернике.Ная2рис.10.4 в плоскости изображен плоский некогерентныйя2источник, а в плоскости экран с двумя дырками. я2Будем считать, что на пути волн установлен светофильтр,я2пропускающий полосу частот, удовлетворяющую условию квазимо-я2нохроматичности. Для выяснения вопроса, получится ли достаточ-я2ная интерференционая картина при суперпозиции волн от дырок Р1я2и Р2 на экране, нужно найти функцию взаимной корреляции коле-я2баний в Р1 и Р2. я2Выделим на плоскости источника элемент площади ия2запишем колебания в точках Р1 и Р2, создаваемые сферическимия2волнами от элемента :я2Для определения колебаний от всех элементов поверхностия2источника запишем суммы: я2Подставив суммарные колебания, получим я2Вторая сумма с разными индексами n и m равна нулю, так какя2мы считаем источник пространственно не когерентным .Первуюя2сумму можно преобразовать в интеграл по площади источника,я2введя плотность интенсивности и заменив ная2При условии ,что источник расположен достаточно далеко отя2















