1_theory (732180), страница 2

Файл №732180 1_theory (Решение обратной задачи вихретокового контроля) 2 страница1_theory (732180) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Полагая зависимость ЭП от глубины известной проведем ее кусочно-постоянную аппроксимацию. Это позволяет свести исходную задачу к расчету ЭДС в многослойном листе, в каждом слое которого ЭП принимает постоянное значение.

Как показано в работе [50], подобная модель вполне адекватно описывает задачу и дает отличное согласование с результатами опытов.

Рекуррентные формулы для произвольного количества слоев хорошо известны [1-5,36, 42,43,50-52]. Таким образом решение прямой задачи в рамках принятой модели затруднений не вызывает.

2.2 Обратная задача ВТК

С математической точки зрения обратная задача ВТК относится к классу некорректных задач[49] и ее решение неустойчиво т.е. при сколь угодно малой погрешности исходных данных( набора измеренных вносимых ЭДС ) погрешность решения ( рассчитанных локальных значений ЭП ) может быть сколь угодно большой, а одному набору измерений может отвечать много (формально бесконечно много) распределений ЭП по глубине.

При попытке расчета некорректной задачи как корректной, вычислительный процесс за счет неустойчивости сваливается в заведомо худшую сторону. В нашем случае это означает получение распределения ЭП, которое, хотя и обеспечивает требуемое совпадение измеренной и вычисленной ЭДС, но является явно нереальным из-за осцилляций. Следует отметить, что амплитуда и частота осцилляций распределения ЭП растут при увеличении числа независимых параметров аппроксимации ЭП ( коэффициентов полинома в случае полиномиальной аппроксимации, количества узлов при сплайн-аппроксимации и т.д.).

При наличии погрешности измерения вносимой ЭДС, превышающей на несколько порядков вычислительную погрешность и на практике составляющей не менее (0.5-1)% от измеряемого сигнала, ситуация значительно осложняется.

Учитывая вышеизложенное для выделения из множества допустимых распределений решения, наиболее удовлетворяющего физической реальности, в алгоритмах решения обратной задачи необходимо использовать дополнительную априорную информацию. На практике это реализуется введением некоторых критериев, позволяющих отличить решение, отвечающее практике, от физически нереального.

Для решения обратной задачи ВТК предлагались три возможные стратегии[46]:

  1. Решение большого числа прямых задач и табуляция результатов для различных моделей. Измеренные данные с помощью некоторых критериев сравниваются с таблицей. Подход очень экстенсивный и требующий проведения избыточного числа расчетов, поэтому на практике встречающийся редко.

  2. Условная минимизация невязки измеренных и расчитанных данных. Очень мощный и универсальный метод, широко распространен для решения обратных задач в различных областях техники [41,44,49]. Позволяет восстанавливать произвольное распределение ЭП по глубине (вообще говоря произвольное 3D распределение), но требуется довольно сложная процедура расчета.

  3. Аналитическое инвертирование ядра оператора и использование алгоритма, зависящего от ядра уравнения[46]. Потенциально самый малозатратный метод, однако как и все аналитические, применим далеко не всегда.

В нашем случае остановимся на втором подходе, поскольку он сочетает в себе универсальность, точность и относительную простоту реализации.

В целом процесс решения обратной задачи сводится к итерационному решению прямой задачи для текущей оценки распределения ЭП и внесению изменений в эту оценку в соответствии с величиной невязки.

2.3 Модель задачи

Приведем основные положения, на основе которых будет построена модель нашей задачи:

  • ОК представляет из себя находящуюся в воздухе проводящую пластину толщиной Н состоящую из N плоско-параллельных слоев толщиной bi.

  • В пределах каждого слоя удельная электропроводность s имеет постоянное значение т.е. распределение s по глубине аппроксимируется кусочно-постоянной зависимостью.

  • Возбуждающая и измерительная обмотки ВТП заменяются нитевидными моделями. Следует отметить, что это предположение сказывается лишь на решении прямой задачи, а проведя интегрирование можно получить выражения для катушек конечных размеров.

  • Для численного моделирования реальных распределений ЭП применим пять типов аппроксимации: сплайном, кусочно-постоянную, кусочно-линейную, экспоненциальную и гиперболическим тангенсом. В процессе решения прямой задачи с их помощью вычисляются значения s в центральных точках слоев пластины.

2.4 Анализ литературы

2.4.1 Зарубежные методы решения

Решению обратной задачи ВТК посвящен ряд работ в зарубежных изданиях. Следует отметить монографию [38], в которой рассмотрены случаи импульсного возбуждения, а оперируют в частотной и временной областях напряженностью электрического поля.

Подход к решению квазистационарных задач рассмотрен в цикле статей [45-51]. Он основан на интегральной постановке задачи с помощью функций Грина[31-34,39]. Для иллюстрации рассмотрим решение обратной задачи ВТК согласно [49].

А. Прямая задача

Определим функцию v(r)=( s(r) - s0 )/s0 , где s(r) - произвольное распределение проводимости, а s0 - ее базовая величина. Функция v(r) может представлять собой как описание произвольного распределения проводимости (в этом случае для удобства полагаем s(r)=s0 вне некоторого ОК объема V, тогда v(r) отлична от нуля только в пределах V ) так и некоторого дефекта (для трещины v(r)=-1 внутри дефекта и равна нулю вне его).

Рассмотрим систему уравнений Максвелла в предположении гармонического возбуждения exp(-jwt) и пренебрегая токами смещения:

( 2.4.1)

где P(r)=[ s(r)-s0 ]×E(r)=s0 × v(r)×E(r) - может интерпретироваться как плотность диполей эффективного тока, причиной которого является вариация s(r)-s0.

Решение уравнений Максвелла можно представить в виде

( 2.4.2)

где Ei(r) - возбуждающее поле, а G(r|r’) - функция Грина, удовлетворяющая уравнениюÑ´Ñ´ G(r|r’)+k2× G(r|r’)=d(r-r’) , k2=-j×w×m0 ×s0 , d(r-r’) - трехмерная дельта-функция.

Импеданс ВТП можно выразить как

( 2.4.3)

где интеграл берется по измерительной катушке, J(r) - плотность тока в возбуждающей катушке. Применяя теорему взаимности импеданс можно представить через возбуждающее поле:

( 2.4.4)

где интеграл берется по объему ОК.

В. Обратная задача

Пусть v(r) - оценка истинной функции vtrue(r), Zobs(m) - измеренный импеданс ВТП в точке r0 на частоте возбуждения w , m=(r0 ,w) - вектор в некоторой области определения M , Z[m,v] - оценка величины Zobs(m) на основе решения прямой задачи.

Определим функционал невязки измеренных и рассчитанных значений импеданса ВТП как :

( 2.4.5)

Предположим, что для решения обратной задачи используется итерационный алгоритм типа метода спуска: vn(r)= vn-1(r)+a sn(r). Можно показать, что в случае метода наискорейшего спуска итерация имеет вид: vn(r)= vn-1(r)-a×ÑF[ vn-1(r) ], где градиент функционала ÑF[v] можно определить как :

( 2.4.6)

где Re обозначает вещественную часть, * обозначает комплексную сопряженность.

Требуемый в (2.4.6) градиент импеданса можно определить как:

ÑZ(r) = -s0×E(r)×E*(r)

( 2.4.7)

где E*(r) - решение уравнения

( 2.4.8)

С. Аппроксимация при решении обратной задачи

Пусть электропроводность моделируется с помощью конечного числа переменных (например узловых значений некоторой аппроксимации), а вектор р состоит из этих переменных. Тогда выражение (2.4.7) принимает вид:

( 2.4.9)

где (ÑZ)j - j-ая компонента градиента импеданса.

Значение j-ой компоненты градиента невязки (2.4.6) можно представить как:

( 2.4.10)

Следует обратить внимание на то, что в случае дискретного пространства М (конечное число измерений) интеграл в (2.4.10) заменяется суммой.

С учетом приведенных преобразований итерация метода наискорейшего спуска принимает вид:

pjn = pjn-1 - a×(ÑFn-1)j

( 2.4.11)

где n - номер итерации.

D. Пример применения

В качестве примера рассмотрим функцию v(r) в виде v(r)=Sci×fi(r), i=1,N , где fi(r) - множество линейно независимых базовых функций с коэффициентами ci. Рассматривая коэффициенты ci в роли параметров аппроксимации (ci=pi ) получим из (2.4.9) для компонентов градиента импеданса:

( 2.4.12)

В случае проводящего ОК, состоящего из N параллельных слоев с проводимостью sj распределение электропроводности по глубине можно представить с помощью функций Хевисайда H(z) как s(z)=S sj×[ H( z-zj ) - H( z-zj+1 ) ].

Характеристики

Тип файла
Документ
Размер
390 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6749
Авторов
на СтудИзбе
283
Средний доход
с одного платного файла
Обучение Подробнее