kursovik (732172), страница 2

Файл №732172 kursovik (Расчет разветвленной электрической цепи постоянного тока) 2 страницаkursovik (732172) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

R-R0/R=at,

если До — сопротивление проводника при 0°С, К — сопротивление проводника при температуре {.

Сопротивление проводника меняется за счет изменения удельного сопротивления, так как при нагревании геометричес­кие размеры проводника меняются незначительно.

Для всех металлов к > 1 и мало меняется при изменении температуры проводника.

Удельное сопротивление проводника линейно зависит от тем­пературы (рис. 61). У чистых металлов, а =1/273*K-1, для раство­ров электролитов, а < 0 и с увеличением температуры сопротивле­ние уменьшается. ,

столкновении с ионами электро­ны теряют скорость направлен­ного движения. Это и приводит

Возрастание удельного со­противления можно объяснить тем, что с ростом температуры амплитуда колебаний ионов кристаллической решетки ме­таллов увеличивается и возрас­тает вероятность их столкнове­ния с электронами. Это и приводит к возрастанию удельного сопротивления. Столкновении с ионами электроны теряют скорость направленного движения.


Рис.2 Зависимость удельного сопротивления от температуры.


Рис.3 Зависимость удельного сопротивле­ния от температуры для ртути.

Зависимость сопротивле­ния металлов от температуры используется, например, в тер­мометрах сопротивления.

Многие проводники обла­дают свойством сверхпроводи­мости, состоящей в том, что их сопротивление скачком падает до нуля при охлаждении ниже определенной критической температуры Т^, характерной для данного материала. Такие вещества получили название сверхпроводники.

Впервые это явление наблюдал в 1911 г. нидерландский физик Гейке Камерлинг-Оннес (1853-1926). Он обнаружил, что ртуть при Т = 4,15°К переходит в новое состояние, названное сверхпроводящим (рис. 62). Позже им было установлено, что электрическое сопротивление ртути восстанавливается при T < Tk в достаточно сильном магнитном поле. Прохождение тока в сверх­проводниках происходит без потерь энергии, поэтому их исполь­зуют в электромагнитах со сверхпроводящей обмоткой. На основе явления сверхпроводимости иногда работают элементы памяти счетно-вычислительных устройств. Устройство переключающих элементов электронных вычислительных машин иногда основано на принципе разрушения сверхпроводящего состояния магнит­ным полем.

Ведутся исследования по созданию сверхпроводящих линий электропередачи, но главная трудность здесь в необходимости глубокого охлаждения всей линии для перехода в сверхпроводящее состояние до температуры ниже 20°К.

1.5. Последовательное и параллельное соединение проводников.

На практике электрические цепи представляют собой сово­купность различных проводников, соединенных между собой оп­ределенным образом. Наиболее часто встречающимися типами соединений проводников являются последовательное и парал­лельное соединения.

Последовательное соединение проводников

При таком соединении все проводники включаются в цепь поочередно друг за другом. Примером такого типа соединения проводников может быть соединение ламп в елочной гирлянде:

выход из строя одной лампы размыкает всю цепь.

Рассмотрим случай последовательного соединения трех про­водников сопротивлениями J^, Д^, Ну подключенных к источни­ку постоянного тока. Схема такой электрической цепи представ­лена на рисунке.

Рис.4

Амперметром А измеряют общую силу тока JT в цепи. Вольт­метрами V1, V2, V3 измеряют напряжение на каждом проводнике, а вольтметром V — напряжение на всем участке цепи.

Расчет токов, напряжений и сопротивлений на участке цепи при таком соединении делают с помощью четырех правил.

а) Сила тока одинакова во всех участках цепи:

I1=I2=I3=I=const.

так как в случае постоянного тока через любое сечение провод­ника за определенный интервал времени проходит один и тот же заряд.

б) Падение напряжения в цепи равно сумме падений напряжений на отдельных участках:

U1+U2+U3=U

Это можно установить из опытов по показаниям вольтметров.

в) Падение напряжения на проводниках прямо пропорционально их сопротивлениям:

U1/U2=R1/R2

Согласно закону Ома для участка цепи и правилу (а):

I=U1/R1;

I2=U2/R2=>U1/R1=U1/R2, откуда

U1/U2=R1/R2

г) Общее сопротивление цепи равно сумме сопротивлений отдель­ных участков:

R=R1+R2+R3

Воспользуемся законом Ома для участка цепи и правилами (а) и (б):

I=U/R=>U=I*R

Аналогично:

U1=I*R1, U2=I*R2, U3=I*R3

U=U1+U2+U3=I*R1+I*R2+I*R3=I*(R1+R2+R3)=I*R

Откуда получим формулу для общего сопротивления цепи:

R=R1+R2+R3

Параллельное соединение

Например, соединение приборов в наших квартирах, когда выход из строя какого-то прибора не отражается на работе ос­тальных.

При параллельном соединении трех проводников сопротивле­ниями R1, R2 и R3 их начала, и концы имеют общие точки подклю­чения к источнику тока. Все вместе параллельно соединенные проводники составляют разветвление, а каждый из них называ­ется ветвью. Схема соединения изображена на рисунке.



Рис.5

Силу тока в каждой ветви измеряют амперметрами A1, A2 и A3. Для расчета токов, напряжений и сопротивлений также пользу­ются четырьмя правилами:

а) Падение напряжения в параллельно соединенных участках цепи одинаково:

U1=U2=U3=U=const.

так как во всех случаях падение напряжения измеряют между

одними и теми же точками.

б) Сила тока в неразветвленной части цепи равна сумме сил токов, текущих в разветвленных участках цепи:

I1=I2=I3=I

в) Сила тока в разветвленных участках цепи обратно пропорцио­нальна их сопротивлениям:

I1:I2:I3=1/R1:1/R2:1/R3

Воспользуемся законом Ома для участка цепи:

I1=U1/R1=>U1=I1*R1

Аналогично:

U2=I2*R2

U3=I3*R3

Согласно правилу (а):

U1=U2=U3=>I1*R1=I2*R2=I3*R3, откуда

I1:I2:I3=1/R1:1/R2:1/R3

г) Общее сопротивление цепи:

1/R=1/R1+1/R2+1/R3

Согласно закону Ома для участка цепи:

I=U/R

и для каждой ветви:

I1=U1/R1; I2=U2/R2; I3=U3/R3

Используя правила (а) и (б), получим:

I=I1+I2+I3=U/R1+U/R2+U/R3=U*(1/R1+1/R2+1/R3) =U/R,

откуда

1/R=1/R1+1/R2+1/R3

1.6. Закон Ома для полной цепи.

Рис.6

Закон Ома для полной (замкнутой) цепи выражает связь между силой тока в цепи, ЭДС и полным сопротивлением.

Рассмотрим полную электрическую Т цепь, состоящую из источника тока с ЭДС е и внутренним сопротив­лением r и внешнего сопротивления R. Внутреннее сопротивление — сопро­тивление источника тока, внешнее со­противление — сопротивление потре­бителя электрического тока, например резистора.

Электрический ток совершает работу не только на внешнем, но и на внутреннем участке цепи: нагревается не только резистор, но и сам источник тока.

По закону сохранения энергии работа электрического тока в замкнутой цепи, равная работе сторонних сил источника тока, равна количеству теплоты, выделившейся на внутреннем и внеш­нем участках цепи:

A=Aст=Q

Поскольку за время t через поперечное сечение проводников пройдет заряд. q, то работа сторонних сил по перемещению заря­да равна:

Aст=e*q=eI*t

где I=q/t - сила тока в проводнике. При этом выделившееся

количество теплоты согласно закону Джоуля-Ленца равно:

Q=I2R*t+I2r*t

Тогда

Aст=eI*t=I2R*t+I2r*t, или

E=I*R+I*r

Здесь произведение IR называется падением напряжения на внешнем участке цепи, Ir — падением напряжения на внутрен­нем участке цепи.

Таким образом, ЭДС равна сумме падений напряжений на внешнем и внутреннем участках полной (замкнутой) цепи.

Напряжение U (падение напряжений) на внешней цепи:

U=e-Ir

Сумма внешнего и внутреннего сопротивлений есть полное сопротивление цепи: R + r. Закон Ома для полной цепи:

I=e/R+r

Сила тока в полной электрической цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Следствия из закона Ома для полной цепи

1. Если внутреннее сопротивление источника тока r мало по срав­нению с внешним сопротивлением R, то оно не оказывает замет­ного влияния на силу тока в цепи. При этом напряжение на зажимах источника приблизительно равно ЭДС:

U=IR=е

2. Когда внешнее сопротивление цепи стремится к нулю (R -> 0) — при коротком замыкании, сила тока в цепи определяется внут­ренним сопротивлением источника и принимает максималь­ное значение:

Imax=e/r

3. При разомкнутой цепи, когда R-> оо (сопротивление внешнего участка цепи бесконечно велико) I = 0, напряжение источни­ка тока равно его ЭДС. или ЭДС источника измеряется разнос­тью потенциалов на его клеммах:

e=U=ф2-ф1

Знак ЭДС и напряжение на участке цепи могут быть положи­тельными и отрицательными. Значение ЭДС считается положи­тельным, если она повышает потенциал в направлении тока — ток внутри источника идет от отрицательного полюса к положитель­ному полюсу источника. Напряжение принимается положитель­ным, если ток внутри источника идет в направлении понижения потенциала (от положительного полюса источника к отрицатель­ному полюсу).

1.7. Источники тока, их соединения.

На практике несколько источников электрической энергии соединяются в группу — батарею источников электрической энергии. Соединение в батарею может быть последовательное, параллельное и смешанное.


При последовательном соедине­нии положительный полюс предыду­щего источника соединяется с отрица­тельным полюсом последующего.

Полная ЭДС цепи равна алгебраи­ческой сумме ЭДС отдельных элемен­тов, а внутреннее сопротивление бата­реи равно сумме сопротивлений источников:

Рис.7

=i=1i,

r=i=1ri,

Объяснить это можно тем, что при последовательном соедине­нии электрический заряд поочередно проходит через источник электрической энергии и в каждом из них приобретает энергию. Внутреннее сопротивление батареи также увеличивается.

При последовательном соединении одинаковых источников с ЭДС е и внутренним сопротивлением г ЭДС батареи и ее внут­реннее сопротивление равны.

б=*n,

Rб=R*n

где п — число источников.

Закон Ома для полной цепи при последовательном соедине­нии одинаковых источников тока записывается в виде;

I=(*n)/(R+r*n)

где  и r — ЭДС и внутреннее сопротивление одного источника, R — сопротивление внешнего участка цепи, I — сила тока в цепи.



Рис.8

Например, полная цепь со­держит несколько источников тока, ЭДС которых равны E1,E2,E3 а внутренние сопротивле­ния—r1,r2,r3, соответственно. ЭДС, действующая в цепи, равна:

б=1 -2+3-4

Сопротивление батареи равно:

r,, = r, + r, + r, + г.

При этом учитываем, что положительными являются те ЭДС, которые повышают потенциал в направлении обхода цепи, т.е. направление обхода цепи совпадает с переходом внутри источни­ка от отрицательного полюса источника к положительному.

Последовательное соединение источников тока применяется в тех случаях, когда нужно повысить напряжение на внешней цепи, причем сопротивление внешней цепи велико по сравнению с внутренним сопротивлением одного источника.

Рис.9

При параллельном соединении источников все их положительные

полюсы присоединены к одному проводнику, а отрицательные—к другому.

Полная ЭДС цепи (всей батареи равна ЭДС одного источника: б= ,а внутреннее сопротивление батареи равно:

Rб=r/n

где п — число параллельно соединенных источников.

При параллельном соединении ток одного источника элект­рической энергии уже не проходит через другие, и поэтому каж­дый заряд получает энергию только в одном источнике. Сопротив­ление батареи меньше сопротивления одного источника, так как через каждый источник электрической энергии проходит только часть зарядов, перемещающихся во внешней цепи.

Закон Ома для полной цепи при параллельном соединении одинаковых источников тока записывается в виде:

Характеристики

Тип файла
Документ
Размер
3,36 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее