FUUSIKA2 (731715), страница 3
Текст из файла (страница 3)
kus liikumise teepikkust tähistame seekod raadiuse (kugus tsentrist) muutusena dr. Kui laeng liigub raadiuselt r1 raadiusele r2, peame integreerima vastavates radades:
Valem näitab, et tsentraalsümmeetrilises elektriväljas liikudes muutub laengu potentsiaalne energia pöördvõrdeliselt kaugusega tsentrist. Analoogiline valem kehtib ka gravitatsioonivälja kohta, ainult et seal esinevad kahe laengu asemel kaks massi ja elektrivälja konstandi asemel gravitatsioonikonstant. Kui laeng liigub tsentrist eemale, siis r2>r1 ja negatiivne liige on väiksem kui positiivne, seega siis potentsiaalne energia kasvab. Vastupidi, potentsiaalne energia kahaneb, kui laeng liigub tsentrile lähemale. Potentsiaalse energia nullnivoo on aga kokkuleppeline. See võiks olla üks äärmuslikest seisunditest, kas
või
(lõpmatus). Siiski, raadius ei saa olla null, sest siis läheneb energia lõpmatusele, seega jääb kokkuleppeliseks nulliks nivoo, kus laengud asetsevad teineteisest lõpmatu kaugel. Lähenedes aga nende potentsiaalne energia kahaneb, seega muutub negatiivseks, ja läheneb miinus lõpmatusele kui laengud kohtuvad. Niisugune potentsiaalse energia nullnivoo definitsioon, mis on hea elektronide ja tuumade vahelise mõju kirjeldamiseks aatomites, on erinev igapäevakogemusest gravitatsioonilise energiaga, kus nulliks loeme tavaliselt energia maapinnal ja energia loeme positiivselt kasvavaks kui keha maapinnast kaugeneb. Kui valemis ???
, st. elektron läheneb tuumale lõpmatu kaugelt, siis tema potentsiaalne energia on alguses null ja kahaneb lõpuks väärtusele
Kuna see energia kuhugi kaduda ei saa, siis muutub ta elektroni liikumise kineetiliseks energiaks, st., lähenedes tuumale elektron liigub kiirenevalt, nii nagu näiteks asteroid liigub kiirenevalt lähenedes Maa pinnale. Vahe on siiski selles, et elektron ei lange kunagi tuumale, vaid jääb tiirlema mingil kaugusel ümber tuuma. Tiirlemise kaugus (raadius, on määratud sellega, millal elektriline tõmbejõud võrdub inertsiaalse kesktõukejõuga. Matemaatiliselt avaldub see tingimus järgmiselt:
Selle valemi vasak pool on varasemast tuttav kesktõukejõu valem keha massiga m ringliikumisel joonkiirusega v ümber tsentri kaugusel r. Valemi parem pool on elektrostaatilise tõmbejõu valem, kuid siin on juba arvestatud, et aatomis positiivne ja negatiivne laeng on võrdsed, mõlemad väärtusega e.
Eelmisest valemist saab leida raadiuse, mille saab siduda nii elektroni kiiruse kui tema kineetilise energiaga:
või
Ümber tuuma tiirleva elektroni kineetiline energia kasvab kui elektron läheneb tuumale (r kahaneb). Tuletame meelde, et potentsiaalne energia samal ajal kahanes:
ja summaarne energia
Elektroni summaarne energia kahaneb kui elektron asub tiirlema orbiidile mis on tuumale lähemal. Kuhu see energiavahe siis läheb, millisesse vormi muutub (kaduda ju ei saa)?
See energiavahe peab aatomist eralduma ja seda ta ka teeb, kas valguskvandi kujul, või kandub üle mõnele naaberaatomile, tõstes selle elektroni vastavalt kõrgemale energianivoole, või eraldub soojusena, s.o. muutub aatomi translatoorseks (kulgevaks) liikumiseks. Niisugune elektronide ja tuuma vahelise kauguse muutumine, elektronide tiirlemine erineva raadiusega orbiitidel, on peamine keemiliste ainete siseenergia, keemilise energia olemus. Ained, mille molekulides elektronid tiirlevad tuumadest kaugemal, on energiarikkamad ja võivad seda vabastada kui keemilise reaktsiooni tulemusena toimuvad muutused, mille tulemusena elektronid saavad tuumadele lähemale asuda. Bioloogiliste protsesside energeetika on samadel alustel: fotosünteesis tõstetakse elektron valguskvandi abil kõrgemale energianivoole, tuumast kaugemale orbiidile, ja metabolismi käigus ta järkjärgult läheneb tuumale, vabastades niimoodi kvandi poolt talle antud energia.
Kas aga elektronid saavad tiirelda ümber tuuma igasugustel kaugustel? Kui see nii oleks, võiks ju vabastada väga suuri keemilise siseenegia koguseid lubades elektronil asuda tuumale väga-väga lähedale (lastes raadiuse nulli lähedale). Tõepoolest, klassikaline füüsika seda lubaks, kuid tegelikkuses seda ei juhtu. Siin tulevad sisse kvantmehaanilised piirangud, mis klassikalise füüsika abil ei seletu. Järgnevas tutvumegi atomaarse kvantteooria põhialustega.















