FUUSIKA2 (731715), страница 2

Файл №731715 FUUSIKA2 (Биофизика) 2 страницаFUUSIKA2 (731715) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Ülesanne: Selgitada, mis ühist on lennuki reaktiivmootoril, propellermootoril, lendamisel tiivalehvitamisega ja planeerimisel.

Üks tähtsamaid kiirendusest tulenevaid jõude on kesktõmbejõud ja kesktõukejõud ringlikumisel, mis on võrdsed javastassuunalised. Keha liigub ringikujulist trajektoori mööda tänu jõule, mis tõmbab teda keskpunkti suunas. Kesktõmbejõud võib olla gravitatsioon (Maa tiirlemine ükber Päikese), elektromagnetiline (elektroni tiirlemine ümber tuuma) või mehaaniline (nöör mis ühendab lingukivi käega, tsentrifugaalpumba korpus, mis suunab vedeliku ringtrajektoorile, aga ega nedes kehadeski esine lõppkokkuvõttes muud kui elektromagnetilised jõud). Kesktõukejõud tekib keha inersti tõttu, tema püüdest likuda sirgjooneliselt puutujat mööda. Kesktõukejõud ringliikumisel avaldub järgmiselt

.

kus on nurkkiirus. Nurkkiirus seostub lineaarkiirusega järgmiselt:

ehk , seega

Kui suur on 100 kg-se mehe kaaluvahe poolusel ja ekvaatoril? Maakera raadius on 6000 km. Nurkkiirus on 2/(24x3600) = 7.27x10-5 radiaani sekundis. Asendades need värtused valemisse (??) saame f=100x(7.27x10-5)2x6x106 = 100x52.8x10-10x6x106= 3.168 N. Poolusel kaalub 100 kg 981 N. Suhteline kaalu kahanemine on 3.17/981=0.0032 ehk 0.32%. Meie laiuskraadil ja ekvaatoril on see suhe veel umbes poole väiksem.

Tsentrifugaaljõu praktilisi rakendusi: tsentrifugaalpumbad ja ventilaatorid. Kuidas muutub ventilaatori ja tsentrifugaalpumba arendatav rõhk mootori pööretest?

Liikumise hulk ehk impulss.

Kui püüate väga massiivset keha, näiteks autot, liikuma lükata, siis tuleb jõudu rakendada küllalt kaua, enne kui saavutate vajaliku kiiruse, näiteks küllaldase mootori käivitamiseks ilma starteri abita. See tähendab, et keha poolt saavutatud kiirus sõltub jõu mõjumise ajast. Kasutame kiiruse arvutamiseks kahte seost: , kust

Suurust mv nimetatakse liikumise hulgaks ehk impulsiks. Impulsi muutus on võrdeline jõuga ja selle mõjumise ajaga ning toimub jõu suunas.

Impulsi jäävus liikuvate kehade vastasmõjudes on energia jäävuse kõrval üks looduse põhiseadusi. Näiteks kahe piljardikuuli põrkel või kahe gaasimolekuli põrkel

Impulsi muutus kehade vastasmõjul on võrdne ja vastassuunaline, süsteemi summaarne impulss on konstantne. Impulsi mõistet kasutame allpool gaaside rõhu arvutamisel.

Töö ja energia.

Töö on füüsikaline suurus, mida mõõdetakse jõu ja jõu suunas läbitud teepikkuse korrutisega

Töö ühik on Dzhaul (Joule), [J] = [N]x[m]. Dzhaul on töö, mida teeb jõud üks njuuton ühe meetri pikkusel teel. Tööd tehakse siis, kui liigutatakse mingit keha avaldades sellele jõudu. Näiteks, tõstes 50 kg viljakotti maast 1m kõrgusele vankrile tehakse töö mis võrdub koti kaal (njuutonites !) korda vankri kõrgus, 50x9.8x1=490 J. Kui vesi langeb 20 m kõrguses joas käivitades turbiini, siis iga kg vett teeb tööd 20x9.8=295 J.

Kui jõud on teepikkuse (koordinaadi) funktsioon (on muutuv sõltuvalt asukohast), siis tuleb rakendada integreerimist. Integreerida võib liikumise ja jõu kui vektori komponente kolme koordinaadi suunas eraldi

Tüüpiline muutuva jõu poolt tehtud töö arvutus on seotud keha asukoha muutusega teise keha gravitatsiooni- või elektriväljas. Näiteks, Newtoni gravitatsiooniseadus väidab, et kahe keha vahel mõjub gravitatsioonijõud, mis on võrdeline nende kehade masside korrutisega ja pöördvõrdeline nedevahelise kauguse ruuduga:

Elementaartöö, mida tehakse selleks, et suurendada kehade vahelist kaugust dx võrra oleks

ja liikumisel üle mingi pikema vahemiku tehtud töö oleks

Kui teepikkus on määratud, tuleb integraal võtta radades liikumise algpunktist lõpp-punkti. Valem ??? näitab, et kui kahe keha vaheline jõud kahaneb kauguse suurenedes pöördvõrdeliselt kauguse ruuduga, siis tehtud töö kasvab kauguse kasvades pöördvõrdeliselt kaugusega. Tõmbuvate kehade vahelise kauguse suurendamiseks tuleb teha välist tööd, kui kehad lähenevad, siis nad teevad ise tööd. Tõukuvate kehade, näiteks samanimeliste laengute vahel, on olukord vastupidine: tõukuvate kehade lähendamiseks tuleb teha välist tööd, kui need kehad eemalduvad teineteisest, siis nad teevad ise tööd. Viimase juhu näiteks oleks aatomite lähenemine, kus välise elektronkihi elektronid tõukuvad üksteise elektriväljas. Tahkete kehade kokkupuude ja hõõrdumine ongi väliste elektronkihtide tõukumine, tegelikku füüsilist kokkupuudet ei esine kunagi.

Võimsus on füüsikaline suurus, mida mõõdetakse ajaühikus tehtud töö hulgaga.

Võimsust kasutatakse näit. mootorite ja küttekehade hindamisel, teadmaks kui palju tööd need suudavad ajaühikus teha. Võimsuse ühik on Watt [W] = [J] [s]-1 üks Dzhaul sekundis. Elektripirnide tarbitav võimsus on näiteks 40 – 100 W, elektripliit 600 – 2000W, automootor 50 – 100 kW. Elektrienergia hulga mõõtmiseks kasutatakse ühikut kilovatt-tund (kWh), see on töö, mida teeb võimsus 1 kW ühe tunni = 3600 s jooksul. Üks kWh = 1000 J s-1 x 3600 s = 3600000 J = 3600 kJ.

Energia on keha võime teha tööd.

Energiat on kahte liiki, liikuva keha kineetiline energia ja jõuväljas asuva keha potentsiaalne energia. Energia jäävuse seadus on looduse põhiseadus: Energia ei teki ega kao, vaid muundub ühest vormist teise. Seega, looduses toimub kineetilise energia muundumine potentsiaalseks ja potentsiaalse energia muundumine kineetiliseks.

Liikuva keha kineetiline energia. Arvutame, kui palju tööd tuleb teha, et keha (massiga m) kiirust suurendada paigalseisust kuni väärtuseni v. See töö moodustabki likuva keha kineetilise energia.

Töö=energia:

Kui suur aga on teepikkus s mille lõpuks saavutatakse kiirus v? Kasutame seost (1.7)

, kust

Teades, et , asendame selle ja saame

Nüüd on selge, et

Kineetiline energia on võime teha tööd. Liikuva keha peatumisel võib ta enese ees lükata teist keha mõjudes sellele jõuga ja tehes tööd. Kui auto sõidab vastu puud, siis auto kineetiline energia liigutab plekke paigast ja murrab sõitjate luid. Tähelepanu, et auto kiiruse suurenemisel kaks korda suureneb kineetiline energia neli korda! Niisugustel deformeerivatel põrgetel muutub kineetiline energia peamiselt molekulide soojusenergiaks. Kineetiline energia muutub potentsiaalseks energiaks kui liikuvat keha peatab jõuväli, näiteks kui viskame kivi ülespoole. Gravitatsioonivälja jõud peatab lõpuks kivi liikumise, kuid kivi kineetiline energia on muundunud tema potentsiaalseks energiaks. Sama juhtub elektronidega, kui nad saavad lisaks kineetilist energiat (näiteks aatomite põrgetel või valguse neeldumisel): nad liiguvad tuumast kaugemale.

Jõuväljas asetseva keha potentsiaalne energia.Vaatleme esialgu gravitatsioonivälja maapinna lähedal. Arvutame, kui palju tööd tuleb teha keha (massiga m) tõstmiseks kõrgusele h.

Gravitatsiooniväli ja elektriväli on nn. potentsiaalsed väljad, kus keha potentsiaalse energia muutus sõltub ainult alg-ja lõppasukohast, mitte aga vahepealse liikumise trajektoorist. Tehtud töö on sama, ükskõik millist rada mööda liigutakse samade alg- ja lõpp-punktide vahel. Vabal inertsel liikumisel jõuväljas (ilma välismõjudeta) potentsiaalne ja kineetiline energia pidevalt muunduvad teineteiseks, nii et summaarne energia on kogu aeg sama:

Näiteks kõrguselt h kukkuva keha kiiruse leiame teades et kukkumise lõpuks

, kust

Ülesvisatava kivi maksimaalkõrguse võime samuti leida tema algenergia (algkiiruse) kaudu.

Kineetilise ja potentsiaalse energia muundumine toimub ka lihastetöös. Näiteks võib teoreetiliselt arvutada, kui kõrgele saab hüpata kirp, kelle kehas keskmine ATP kontsentratsioon on 0.1 mM, eeldades, et ATP keemiline energia kõik muutub hüppel kineetiliseks energiaks.

Eelmised ülesanded on lihtsad, sest ülesvisatud keha kõrgus muutub suhteliselt Maa raadiusega sedavõrd vähe, et rakusjõudu saab lugeda konstantseks. Kui aga kaugus muutub suhteliselt palju, näiteks nagu kosmoselendudel, või nagu elektroni kaugus muutub tuuma suhtes, siis ei saa ei gravitatsiooni- ega elektrivälja jõudu enam konstantseks lugeda vaid töö (energia) arvutamisel tuleb arvestada, et jõud muutub koos kaugusega.

Jõudude tasakaal, kiirus ja energia ringjoonelisel tiirlemisel.

Looduses asuvad kõik kehad üksteise jõuväljades, suuremad kehad gravitatsiooniväljas, väikeste kehade puhul on oluline elektriväli. Ometi ei kuku tõmbuvad kehad üksteise peale, sest sellisel juhul oleks kogu Universum ammu kokku kukkunud, elektronid oleksid kukkunud aatomituumadesse ja planeedid nende Päikestesse. Loodust stabiliseerib see, et kehad tiirlevad üksteise ümber, nii et kesktõmbejõud ja kesktõukejõud on võrdsed ja radiaalsuunalist kiirendust (jõudu) ei esine. Kasutades füüsikast teadaolevaid valemeid gravitatsioonilise (elektrilise) kesktõmbejõu ja inertsiaalse kesktõukejõu kohta saab nende tasakaalutingimustest tuletada näiteks kui suur on tiirleva keha potentsiaalne, kineetiline ja summaarne energia.

Mõlemad, nii elektrivälja kui ka gravitatsioonivälja tugevus (mõjuv jõud) kirjelduvad ühe ja sellesama seadusega:

gravitatsiooniväli: ja elektriväli:

kus m on keha mass, e on keha laeng (indeksid näitavad esimese ja teise keha oma eraldi), r on nendevaheline kaugus ka konstant k määrab seose kasutatava ühikute süsteemiga. Kui masse mõõdetakse kilogrammides, siis gravitatsioonijõu saamiseks Njuutonites omab gravitatsioonikonstant kg väärtust ????. Kui laenguid mõõdetakse Coulombides (Kulonites, C) siis elektrostaatilise tõmbejõu saamiseks Njuutonites elektriväljakonstant ke omab väärtust ????.

Muide, selles, et need konstandid ei oma väärtust 1, väljendub füüsikalise mõõtühikute süsteemi ajalooliselt kujunenud ebajärjekindlus. Süsteemselt õige oleks olnud massiühikuks võtta niisugune mass, mis teist samasugust tõmbab ühe pikkusühiku kauguselt ühikulise jõuga. Seesama ühikuline jõud aga peab andma ühikulisele massile ka ühikulise kiirenduse. Et see aga nii tuleks, peaks nii massi, pikkuse kui ajaühikut vastavalt muutma. Praegused põhiühikud ei ole üldse seotud gravitatsiooniseadusega. Samasugune on lugu elektrilaenguühikutega. Formaalselt peaks laenguühik Coulomb (Kulon) olema defineeritud kui laeng mis tõmbab teist samasuurt vastasmärgilist laengut pikkusühiku kauguselt ühikulise jõuga. Tegelikult on aga Coulomb defineeritud hoopis magnetvälja kaudu: Coulomb on laeng, mis liikudes ühe sekundi jooksul läbi 1 m pikkuse traadi mõjutab teist samasugust traati, milles voolab niisama tugev vool, 1 m kauguselt jõuga 1 N. See definitsioon baseerub magnetväljal, mis on liikuvate laengute ümber ruumis. Elektrivälja jõud avaldub nüüd aga ülaltoodud kaliibrimiskonstandi kaudu.

Leiame keha (laengu) potentsiaalse energia tsentraalsümmeetrilises gravitatsiooni- (elektri-) väljas. Kuna jõud on tugevasti kaugusest sõltuv, siis tuleb kindlasti rakendada integreerimist. Laengu liikumisel elektriväljas väga lühikesel teepikkusel tehtud töö on

Характеристики

Тип файла
Документ
Размер
177,5 Kb
Материал
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее