147304 (730461), страница 3

Файл №730461 147304 (Основы построения систем. Способы передачи и анализ телемеханических сигналов) 3 страница147304 (730461) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Помехозащищенные коды предполагают, что из множества различных слов (комбинаций) для использования выбраны только такие, для которых . Выбор такого подпространства с нужными свойствами из пространства сигналов представляет собой задачу выбора кода, оптимального по какому-либо определенному критерию. Чаще всего таким критерием является именно кодовое расстояние d при ограничениях на число разрядов п и т. Широко используются следующие постановки задачи:

выбрать из множества заданное число М комбинаций с максимально возможным кодовым расстоянием d;

выбрать из множества максимальное число комбинаций с заданным кодовым расстоянием d;

найти такой оператор, который однозначно трансформирует m-значные комбинации в п-значные ( ) и обеспечивает максимальное кодовое расстояние для данного вида преобразований.

Наиболее широко используются в телемеханических системах коды, получаемые в результате линейных преобразований m -значных комбинаций в п-значные ( ), называемые поэтому линейными.

Линейное преобразование в пространстве X обладает следующими свойствами:

т.е.

где: - произвольные векторы из пространства X; произвольные скалярные величины.

Множество всех линейных преобразований некоторого линейного пространства само является линейным пространством, в котором определены векторное сложение и умножение на скаляр:


для всех х X.

Операция сложения схемно легко реализуется в виде параллельного соединения, а умножение — последовательным соединением соответствующих блоков, выражающих указанные операторы.

Линейные коды с избыточностью (корректирующие коды) строятся добавлением к каждой m-значной комбинации исходного кода k проверочных символов, выбираемых по определенному правилу (линейной форме).

Комбинации корректирующих кодов в общем виде записываются следующим образом:

где: - информационные символы 1-й комбинации исходного кода;

— проверочные символы.

Коэффициенты могут иметь значения 0 и 1, суммирование проводится по модулю 2.

Корректирующие возможности кода зависят от кодового расстояния, косвенно отражаемого в форме общей записи числом проверочных символов . В табл 1 приведена система кодовых слов при минимальном для помехозащищенных кодов расстоянии d = 2.

Таблица.1

0

0

0

0

1

0

0

1

0

0

1

1

1

0

1

0

0

1

0

1

1

1

0

0

0

1

1

0

1

1

1

1

Разряд является проверочным на четность по правилу .

Из примера видно, что появление ошибки в любом разряде может быть обнаружено, так как возникает комбинация не из набора разрешенных . Добавляя проверочные разряды, можно поучить множество комбинаций с кодовым расстоянием d > 2, что позволяет не только обнаруживать ошибки, но и исправлять их (корректировать).

Например, множество кодовых слов с d=3 (табл. 2.2) обладает возможностью обнаруживать и исправлять ошибку в одном разряде или же только обнаруживать ошибки в двух разрядах.

Разряды

;

;

являются проверочными на четность.

Таблица 2

0

0

0

0

0

0

0

1

0

0

0

1

1

0

0

0

0

1

1

1

1

1

0

0

1

0

0

1

0

0

1

0

0

1

1

1

0

1

0

1

0

1

0

0

1

1

1

0

0

1

0

1

1

0

1

0

0

1

0

0

1

0

1

1

1

0

0

0

1

1

0

1

0

1

0

1

0

1

1

0

1

1

0

0

0

1

1

0

1

1

0

1

1

1

0

0

0

0

0

1

1

1

0

0

1

1

1

1

1

1

1

1

В общем виде корректирующие возможности кодов с могут быть охарактеризованы выражением

d = r + s + 1,

где: r — число обнаруживаемых ошибок; s - число исправляемых ошибок.

Например, при d = 4 код может обнаружить две и исправить одну ошибку (r = 2, s = l) или же обнаружить три ошибки ( r = 3, s = 0).

Синтез линейных кодов с заданными свойствами обычно осуществляется кодирующими устройствами (рис. 16, а), которые сравнительно просты, так как содержат только ячейки регистра сдвига ( ) и сумматор по модулю 2. К сумматору подключаются выходы тех ячеек регистра, для которых = 1 в соответствии с выбранными линейными формами кода. От вида кода может изменяться не только число связей , но и число сумматоров.

Рассмотрим для примера структуру кодирующего устройства для образования линейною кода c d=3 (обычно называемого кодом Хэмминга) при трех информационных и трех контрольных символах (рис. 16, б). В ячейки 1-3 регистра памяти вводятся исходные информационные символы . Далее проводится сдвиг всех символов на один такт, в результате чего в ячейку 3 записывается сумма по модулю 2 первого и второго информационных символов. После второго сдвига в ячейке 1 будет , в ячейке 2- , а в ячейке 3- . Третий такт сдвига приводит к тому, что в ячейках регистра окажется комбинация проверочных символов к исходной комбинации кода.

Характеристики

Тип файла
Документ
Размер
29,97 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее