HAI-0168 (729756), страница 2

Файл №729756 HAI-0168 (Техническая эксплуатация автомобилей. Расчет вероятности безотказной работы деталей ЦПГ) 2 страницаHAI-0168 (729756) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

l =36,08636тыс. км.

п.3.1.2. Подсчитаем частоты попадания случайной величины ресурса l в интервале группирования. Выберем начальное lн и конечное lн значения величины, которые берутся ближе к целочисленному lmax и lmin .

lн = 66 ; l1 =66 +36 =102; l2 =102 +36 =138 ; l3 =138 +36 =174;

l4= 174 +36=210; l5 =210 +36 =246; l6= 246 +36 =282; l7 =282 +36 =318;

lн = 66 и l7 = lк = 318 (тыс. км)

l н l1 l2 l3 l4 l5 l6 lк

66 102 138 174 210 246 282 318

Чертим прямую и разбиваем на интервалы равные от 66 до 318 тыс. км.

п.3.1.3. Определим какое количество ресурсов попадает в интервалы и определим середины этих интервалов. Для удобства пользования данные вычислений занесём в таблицу 3.

ТАБЛИЦА 3.

Определение частоты попадания ресурсов в заданные интервалы.

No интервала

Границы интервалов (тыс. км)

Середины интервалов (тыс. км)

Частота попадания в интервал , ni

1

66 - 102

84

3

2

102 - 138

120

6

3

138 - 174

156

15

4

174 - 210

192

17

5

210 - 246

228

21

6

246 - 282

264

3

7

282 - 318

300

1

п.3.1.4.Определение параметров и характеристик нормального закона. Плотность вероятности f(l) нормального закона имеет вид:

_ ____ _ _ _

f (l) = 1/ (exp[ - ( li - a ) 2 / 22 ], где

_ _

a и -- параметры нормального закона распределения;

exp (z) – форма представления числа е в степени z : exp (z)= ez

а) вычислим математическое ожидание a по формуле:

_ r __

a = 1 / N* li * ni , где

i=1

r – количество интервалов;

N – общее число наблюдений;

li – середины интервалов;

ni – частота попадания в интервалы.

_

а = 1 / 66* ( 84*3 + 120*6 + 156*15 + 192*17+ 228*21 + 264*3 + 300*1) =

= 1 / 66 *12456 = 188,72727 188,73 (тыс. км )

б) Рассчитаем среднеквадратичное отклонение по формуле:

_ ________________________

= 1 / (N - 1) * li - a)2 * ni , (тыс. км)

_ _____________________

= 1 / (66 - 1) * li - a)2 * ni ,= 46,2898 46,29 (тыс. км)

в) вычислим значения эмпирической плотности распределения вероятностей fэ(li) по интервалам наработки:

_

fэ(li) = ni / (N *l) ,

г) рассчитаем нормированные и центрированные отклонения середины интервалов:

_ _ _ _

yi = (li- a) /  ,

д) определим значения теоретической плотностираспределения вероятностей fт(li ) по формуле: _ _

fт(li) = (1 / fо(yi) , где

___

fо(yi) = (1 /  2) * exp( -yi2 / 2)

Полученные значения расчетов в пунктах в, г, д сведем в таблицу 4.

ТАБЛИЦА 4.

Таблица вычислений эмпирической и теоретической плотности распределения вероятностей и нормированных и центрированных отклонений середины интервалов.

n i \ Параметры

yi

fэ(li)

fо(li)

fт(li)

n1

-2,262

0,0013

0,0333

0,0007

n2

-1,485

0,0025

0,1333

0,0029

n3

-0,707

0,0063

0,3278

0,0071

n4

0,071

0,0072

0,4

0,0086

n5

0,848

0,0088

0,2857

0,0062

n6

1,626

0,0013

0,1089

0,0023

n7

2,404

0,0004

0,0222

0,0005

е
) По результатам расчетов строим на рисунке 1 гистограмму: эмпирическую кривую, распределение плотностей вероятностей fэ(li), теоретическую кривую распределения fт(li) и выравнивающую кривую.

Рис.1. Гистограмма середины интервалов, кривая распределения плотностей вероятностей fэ(li), теоретическую кривую распределения fт(li) и выравнивающая(огибающая) кривая.

п.3.1.5. Проверка согласия между эмпирическим и теоретическим (нормальным) законом распределения по критерию Пирсона :

а.) Определим меру расхождения между эмпирическим и теоретическим распределениями:

r

ni - ni`)2 / ni` , где

i=1

ni и ni` -- соответствие эмпирической и теоретической частоты попадания случайной величины в i-ый интервал.

Для удобства вычислений критерий определим по формуле:

r _ _ _

2 = N * l * fэ(li) - fт(li) ]2 / fт(li) ,

i=1

2 =5,12

б.) Вычислим число степеней свободы m ( при этом интервалы, в которых частоты ni меньше 5-ти объединим с соседними интервалами):

m = r1 - k - 1, где

r1 -- число интервалов полученное при объединении;

k – количество параметров закона распределения.

Нормальный закон является двухпараметрическим и определяется математическим ожиданием и средним квадратичным отклонением , т.е. k=2.

m = 4-2-1 = 1

в.) По значениям и m определим вероятность согласия P() теоретического и эмпирического измерения P() = P(5,12) = 0,0821; Р( ) > 0,05, значит эмпирическое распределение согласуется с нормальным законом распределения.

п.3.1.6. Определение оценок показателей надёжности детали:

а) рассчитаем значение среднего ресурса R при нормальном законе распределения, который численно равен математическому ожиданию а, поэтому R= а = 188,73 (тыс. км)

б) рассчитаем вероятность безотказной работы детали по интервалам наработки по формуле:

_ _ r

P(li) = (N - ni / N) ,

i=1

P(l1) = (66-3)/66 = 0,95;……………………………………………... P(l7) =(66-66)/66 = 0

в) построим кривую вероятности безотказной работы детали P(li) в зависимости от ее наработки l на рисунке 2.



Рис.2 График P(li) кривая вероятности безотказной работы детали в зависимости от наработки l.

п. 3.2. Расчёт параметров распределения ресурсов детали по корреляционным уравнениям долговечности.

Для сбора данных по эксплуатационной надежности агрегатов автомобиля требуется 5-6 лет, поэтому оценка долговечности новых моделей двигателей производится на основе аналогии, ускоренных испытаний и прогнозных моделей .

Одним из направлений прогнозирования является разработка полуэмпирических моделей, представляющих собой корреляционную зависимость линии регрессии между величинами, характеризующими уровень нагруженности, и показателем ресурса рассматриваемой детали.

Для деталей двигателя данный подход реализован в виде корреляционных уравнений долговечности:

К = А+В(R - С*n)-1 , где

К- критерий нагруженности;

А, В, С -- коэффициенты;

R -- средний ресурс детали;

n = Т-Т0=1980-1970=10 - прогнозируемый период (Т- год начала выпуска двигателя, Т0- 1970 год точка отсчета прогнозируемого периода).

Критерий нагруженности рассчитывается по формуле:

Кк = kмк*kт*Sк(pR + 0.1D2*pi*b-1*r-1),

средний ресурс рассчитывается уравнением: Кк = - 25,2 + 81840 / (Rк - 2,75n), где

kмк -- удельный критерий физико-механических свойств кольца;

kт -- удельный критерий тепло напряженности;

pR -- удельное давление на стенку цилиндра от сил упругости кольца МПа;

D -- диаметр цилиндра, дм;

pi -- среднее значение индикаторного давления, МПа;

b -- высота верхнего компрессионного кольца, дм;

r = 0,5(D - t) -- радиус осевой линии кольца, дм;

t -- радиальная толщина кольца , дм;

Sк -- путь трения кольца, м/км;

 -- отношение радиуса кривошипа к длине шатуна;

S -- ход поршня, м;

-- плотность материала кольца, Н/м3 .

Характеристики

Тип файла
Документ
Размер
488,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее