145938 (728984), страница 3
Текст из файла (страница 3)
S=a + bVcp / Vcp , (16)
где а = 4,33; b = 0,011 – параметры себестоимости; Vср – средняя скорость движения потока автомобилей.
Потери от ДТП определяются раздельно для каждого однородного по дорожным условиям участка с последующим суммированием результатов.
Расчетная формула для определения потерь народного хозяйства от ДТП
Ct = 3,65 10-6LiatiCсрtimti Nti , (17)
где ati – количество ДТП на 100 млн. авт. – км в t – м году; Cсрti – средняя величина потерь от одного ДТП в t-м году, р.; mti- итоговый коэффициент, учитывающий тяжесть ДТП; Nti – среднегодовая суточная интенсивность движения на участке дороги в t-м году с авт./сут (принимается 12-й год); Li – протяжённость участка дороги с однообразными дорожными условиями, км.
Количество ДТП определяется выражением
Аti=0,009K2ti – 0,27Kti + 34,5 , (18)
где Кti - итоговый коэффициент аварийности, принятый на основании эпюры Кав; Cсрti – 50000 р.0.
Учёт влияния дорожных условий, в которых произошло ДТП, оценивается итоговым коэффициентом mti, равным произведению частных коэффициентов: mti=m1m2m3…m, где m1=1,0 при ширине проезжей части b=7-7,1 м; m1=1,23 при b=6,0 м и m1=0,9 при b=15 м; m2=1,0 при ширине обочин а 2,5 м. и m2=0,85 при а 2,5; m3=1,0 при i30%; m3=1,25 при i30%; m4=1,0 при Rг 350 м и m4=0,9 при Rг 350 м; при недостаточной видимости m5=0,7; m6=0,70 при пересечении в разных уровнях; m7=1,6 – при наличии населённых пунктов; m8=1,0 при четырехполосной, m8=1,1 при двухполосной дороге.
-
Эз – потери от изъятия земель под строительство дороги, зависящие от ценности земель [ ].
- Эвр – потери, связанные с нахождением пассажиров в пути. При этом потери 1 часа одним пассажиром оцениваются в 20 рублей. Следует отметить, что для более короткого и дешевого варианта экономические расчеты не проводятся. Очевидно выгодным и будет более дешевый и короткий вариант.
На основании выполненных расчетов рекомендуется составление свободной таблицы технико – экономических показателей вариантов трассы, форма которой приводиться (табл. 5)
Таблица 5
| Наименование показателей | Измеритель | Варианты | |
| I | П | ||
| 1 | 2 | 3 | 4 |
| 1. Общестроительные | |||
| 1.1. Общий объем земляных работ | 100м3 | ||
| 1.2. Сметная стоимость возведения земляного полотна | тыс, р | ||
| 1.3. Объем работ по искусственным сооружениям, в том числе:
| шт. пог. м шт. пог.м | ||
| 1.4. Затраты на устройство искусственных сооружений | тыс.р | ||
| 1.5. Затраты на устройство дорожной одежды | тыс.р | ||
| 1.6. Прочие затраты | тыс.р | ||
| 1.7. Общая стоимость строительства | тыс.р | ||
| 1.8. Средняя стоимость на 1 км | тыс.р | ||
| 2. Технические и транспортно – эксплуатационные | |||
| 2.1. Общая длина трассы | км | ||
| 2.2.Коэффициент развития трассы | - | ||
| 2.3. Средняя величина угла поворота | рад | ||
| 2.4. Средний радиус закругления | М | ||
| 2.5. Относительная длина трассы
| - - - | ||
| 2.6. Условный средний уклон
| %о %о | ||
| 2.7. Характеристика коэффициента аварийности
| - - - | ||
| 2.8. Среднее значение скорости движения | Км/ч | ||
| 2.9. Среднее время пробега одного автомобиля | ч | ||
| 3. Экономические | |||
| 3.1. Годовые транспортно – эксплуатационные расходы | тыс. р | ||
| 3.2. Потери от ДТП на расчетный год Эав | тыс. р | ||
| 3.3. Суммарные приведенные затраты | тыс. р | ||
1.3. ПРОЕКТИРОВАНИЕ ПРОДОЛЬНОГО ПРОФИЛЯ.
1.3.1. Правила нанесения проектной линии.
Проектную линию продольного профиля проектируют в виде плавной линии, состоящей из прямолинейных участков и вертикальных кривых.
Этот процесс включает нанесение проектной линии и вычисление проектных и рабочих отметок по методу Антонова [5]
Проектировать нужно с учетом обеспечения:
а) устойчивости земляного полотна и дорожной одежды в течение круглого года;
б) наименьшей строительной стоимости дороги;
в) удобства и безопасности движения автомобилей с наименьшей стоимостью перевозок.
Отметки проектной линии для вновь проектируемых дорог отнесены к бровке земляного полотна проектируемой дороги.
Проектную линию наносят по обертывающей и по секущей линии. Проектирование по обертывающей чаще всего применяется в равнинной и слабо пересеченной местности и заключается в том, что проектную линию наносят, следуя основным изгибам поверхности земли, с соблюдением рекомендуемых рабочих отметок, радиусов вертикальных кривых и уклонов не выше максимально – допустимых для дороги данной категории.
В условиях холмистого, сильнопересеченного рельефа проектная линия наносится по секущей с примерным балансом земли для смежных участков насыпей и выемок. Для обеспечения водоотвода проектную линию в выемке наносят с уклоном не менее 5%о, проектирование горизонтальных участков в выемках не допускается. При этом следует избегать мелких выемок большой протяженности. Такие выемки обычно сырые и снегозаносимые. Нужно избегать резких переходов профиля от одних уклонов к другим, а также применения кривых медого радиусе между длинными прямыми и коротких прямых вставок между смежными кривыми большого протяжения, применения кривых малых радиусов в конце затяжных опусков.
1.3.2. Техника нанесения проектной линии по методу Антонова.
В настоящее время наибольшее распространение получил метод проектирование проектной линии продольного профиля вертикальными кривыми, сопрягающимися непосредственно друг с другом, или при помощи прямых вставок. Этот метод разработан Н.А. Антоновым (метод Антонова) [5].
При проектировании проектной линии вертикальными кривыми (метод Антонова) на точно вычерченный профиль местности накладывают прозрачные шаблоны вертикальных кривых разных радиусов, выполненных в масштабе продольного профиля (М гор – 1:5000, Мвер – 1:500), либо определяют главные точки закругления расчетом.
По примеру шаблона (рис.1) нанесены штрихи с указанием уклонов в тысячных к местам касания прямых. На шаблонах имеются также горизонтальные и вертикальные линии для правильного их ориентирования при работе на миллиметровой бумаге. Участки проектной линии в виде прямых удобно намечать с помощью треугольника уклонов (рис. 2), лучи которого имеют различные уклоны в % от 10 до 100.
Пользование шаблонами значительно облегчает проектирование проектной линии, так как дает наглядную картину от вписывания того или другого радиуса вертикальной кривой в каждом конкретном случае. Вертикальные прямые имеют восходящие и нисходящие ветви (рис. 3). По восходящей ветви все касательные имеют положительный уклон, а по нисходящей ветви – отрицательный. В точке вертикальной кривой, где восходящая ветвь переходит в нисходящую (на выпуклых кривых) или наоборот (на вогнутых), касательная горизонтальна, и уклон ее равен нулю.
P = 5000
Лекало для графического
проектирования продольного профиля
М
sept : 1:500
for : 1:5000
30
50
40
30
70
10
60
10
0
30
40
100
20
80
100
80
0
40
40
20
Рис. 1. Образец шаблонов для проектирования вертикальных кривых
Нанесение прямолинейных участков и вписание вертикальных кривых по шаблонам составляют первый этап проектирования проектной линии. На этом же этапе определяют пикетажное положение и проектные отметки связующих точек. Связующие точки – это точки, но которых имеются геометрические элементы проектной линии: уклоны вертикальных кривых, нулевые точки, переходы выпуклых кривых в вогнутые (или наоборот).
На втором этапе проектирования вычисляются отметки пикетов и всех промежуточных точек в пределах вертикальной кривой (прил. 3). Для вычисления проектных отметок в пределах вертикальных кривых пользуются таблицами Н.М. Антонова [4], составленными по двум схемам (рис. 4).
В
1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
расчетной схеме №1 за начальную точку 0 принято начало вертикальной кривой (слева по ходу), и все расстояния l и превышения h определяются по отношению к этой точке. Этой схемой обычно пользуются при последовательном проектировании слева направо.10
20
30
40
50
60
70
80
90
100
Рис. 2. Треугольник уклонов
Восходящая
ветвь















