144412 (727662), страница 4
Текст из файла (страница 4)
Важную роль играет вязкость расплава, зависимая от состава сырья и температуры. С понижением вязкости расплав теряет в возрастающей мере первоначальную упорядоченность структуры и вместе с тем в нем ускоряется перемещение микрочастиц. Расплав становится высокотемпературным вяжущим веществом; в нем повышается уровень свободной и поверхностной энергий.
При последующем понижении температуры в расплаве возникают более устойчивые соединения, из которых формируется кристаллическая фаза, массовое образование которой относится ко второй стадии отвердевания.
Кристаллизация охлаждающего расплава начинается при определенной температуре, соответствующей температуре плавления данного вещества и появлению наибольшего количества микрозародышей.
Из расплава в первую очередь выделяется избыточный компонент в виде новой кристаллической фазы. Его концентрация в расплаве при дальнейшем постепенном понижении температуры соответствует составу эвтектики. В эвтектических точках возможна одновременная кристаллизация двух-трех фаз и более. При этом сначала кристаллизуются вещества, содержащие ионы высокой валентности с малыми радиусами, обеспечивающими наиплотнейшую упаковку в кристаллических решетках.
При отвердении расплавов проявляется закон эвтектики: стремление к такой смеси, которая обеспечивается переходом расплава в твердый сплав при самой низкой температуре.
В расплавах, как и в растворах, может присутствовать газовая фаза как основной или побочный продукт химических реакций. Она может появиться также под влиянием порообразующих добавок, испарения и т.п. В этих случаях поры вяжущего вещества в большей или меньшей мере наполняются газом, что может сопровождаться новыми химическими реакциями с выделением новых фаз.
Система вяжущих контактного твердения. Включает в себя вяжущие аморфной и нестабильной кристаллической структуры, которые способны конденсироваться в момент возникновения контактов между частицами при сближении их на расстоянии поверхностных сил притяжения. Окаменение этих вяжущих не связано с химическими процессами и изменением объема твердой фазы. Обеспечение более прочных контактов между частицами вяжущего вещества достигается приложением внешнего давления. При малых давлениях полезно в системе присутствие очень малых количеств жидкой среды как своеобразной смазки. Самым важным для этой системы является получение вещества в кристаллическом или аморфном состоянии. Поэтому на первой стадии отвердевания производятся технологические операции, обеспечивающие образование неупорядоченной структуры. С этой целью в зависимости от вида исходного сырья применяют термическую обработку до удаления кристаллизационной воды и максимальной аморфизации вещества, глубокую гидратацию без образования кристаллической фазы и др. Отвердевание порошкообразного вяжущего происходит в момент возникновения прочных связей между частицами аморфного вещества и упорядочения структуры по границам контакта с переводом метастабильного состояния в устойчивое.
На второй стадии отвердевания матричного вещества во всех возможных системах, к которым относятся реальные вяжущие вещества в микро- и макроструктурных строительных конгломератах, процессы завершаются большим или меньшим упорядочением, снижением энтропии, переходом системы в относительно более устойчивое по возможности в кристаллизационное состояние. К завершающему этапу отвердевания количество жидкой среды в системе становится минимальным, а количество твердой фазы – максимальным, т.е. величина отношения с/ф постепенно уменьшается, приближаясь к некоторому оптимальному значению.
Существенно изменяются и их качественные характеристики. Часть жидкой среды из свободного состояния переходит в химически связанное, коллоидно-сольватированное, переохлажденное состояние, парогазообразную фазу и др. Некоторая часть оставшейся жидкости в свободном состоянии растворяет лиофильные ингредиенты смеси, становясь метастабильным раствором. Твердая фаза изменяет свой молекулярный состав и микроструктуру с переходом, как правило, к другим типам связи по сравнению с исходным твердым веществом. Она в различных системах может находиться в кристаллическом, кристаллитном, аморфном, стеклообразном или гелеобразном состояниях. Иногда возможно удаление некоторой части твердого вещества из системы за счет сублимации. Качественные и количественные изменения приводят к возрастанию концентрации твердой фазы, уменьшению средних расстояний между частицами, уплотнению и упрочению структуры, т.е. к консолидации твердеющего вещества.
Отвердевшие матричные вещества, т.е. перешедшие в камневидное состояние, например цементный камень, гипсовый камень, асфальтовое вяжущее вещество, наполненный полимер, цементы высоких температур – керамика, стекло, шлаки, каменное литье и т.п., занимают определенную часть структуры в соответствующих искусственных конгломератах, выполняя в них функцию цементирующей связки. Крупнозернистая или иного характера минеральная или органическая смесь, составляющая гораздо большую часть объема ИСК и выполняющая в нем функцию заполнителя, скрепляется, цементируется, образуя с вяжущей частью, как с матрицей, единый монолит. Небольшая доля вяжущего вещества непосредственно примыкает к поверхности крупных и мелких зерен заполнителя, образуя тонкий контактный слой, именуемый адсорбционно-сольватной оболочкой. Она обладает повышенной плотностью и твердостью по сравнению с остальной матричной частью. Контактный слой составляет в структуре ИСК непрерывную пространственную сетку вяжущего вещества, или матрицу конгломерата.
2. Структура строительных материалов и изделий
Под структурой, или внутренним строением строительных материалов, как и других физических тел, понимают пространственное расположение частиц разной степени дисперсности, находящихся в устойчивых взаимных связях с определенным порядком сцепления их между собой. В понятие структуры входят, кроме того, размер и расположение пор, капилляров, поверхностей раздела фаз, микротрещин и других элементов. В структуре ИСК имеются микродисперсная и макродисперсная части.
Под микроструктурой подразумевается расположение, взаимоотношение и взаимосвязь различных или одинаковых по размеру атомов, ионов и молекул, из совокупности которых слагаются вещества в определенных агрегатных состояниях. Сформировавшееся атомно-молекулярное строение, находящееся в относительно устойчивом равновесии, предопределяет макроскопические особенности материала. На макроскопическом уровне также устанавливается в той или иной мере устойчивое расположение, взаимосвязь и порядок сцепления макромолекул, их скоплений, кристаллов, кристаллических обломков и сростков, аморфных и других сравнительно крупных частиц и элементов, составляющих материалы, а также соотношения компонентов, фаз и поверхностей раздела более сложной материальной системы – конгломерата.
Основной формой расположения микрочастиц в пространстве является кристаллическая решетка. Каждому типу связи соответствует свой характерный тип кристаллической решетки, а именно: ионная решетка; молекулярная, или поляризационная решетка, формирующаяся с помощью ван-дер-ваальсовых сил; атомная с резко выраженной ковалентной связью; металлическая; решетка с водородными связями. Особенностью твердых тел является взаимозависимость, или корреляция, положений соседних атомов с ближним и дальним порядками. В кристаллических решетках дальний порядок распространяется на большие области, а ближний – на окружение данного атома. В реальных условиях у кристаллов обычно имеются отклонения от идеальной геометрической формы вследствие ряда побочных явлений в процессах отвердевания.
Твердые вещества, не обладающие кристаллической структурой, относятся к аморфным. Самый распространенный представитель аморфных тел – стекло. Беспорядочное расположение атомов и молекул в аморфных телах усложняет их структуру. О ней нередко судят по некоторым косвенным показателям. Так, например, аморфные вещества при нагревании в отличие от кристаллических способны плавиться постепенно, не имея определенной температуры плавления; они обладают изотропностью, т.е. одинаковыми свойствами во всех направлениях. Упорядоченность расположения частиц наблюдается только в небольших элементах объема. В этих зонах структура именуется как кристаллитная: между кристаллами, занимающими микрообъемы, находятся прослойки полностью аморфного вещества.
У кристаллических твердых тел имеются весьма значимые их признаки: фиксированная температура плавления – полного перехода в жидкое состояние; определенная геометрическая форма кристаллов, которая остается характерной для данного вещества; анизотропия, выраженная в неодинаковых свойствах по различным направлениям. Тепловой эффект кристаллизации – основной критерий этого фазового превращения.
Кристаллическое и аморфное строения могут быть присущи одному и тому же веществу, например, кристаллический кварц и кварцевое стекло имеют общий химический состав 8Ю2. Одно и то же кристаллическое вещество может находиться в различных формах существования кристаллов, что известно под названием полиморфизма. Полиморфизм вызывает изменение свойств при сохранении постоянным состава вещества, что лишний раз указывает на важнейшую роль структур в становлении качества материала. Так, например, алмаз и графит, являясь кристаллическими модификациями углерода, обладают различной твердостью: алмаз применяют при бурении прочных горных пород; графит – мягок, он используется как смазка или стержень карандаша
Структура не остается неизменной, застывшей. Она непрерывно претерпевает изменения в пространстве и во времени. Этому способствует, в частности, постоянное движение элементарных частиц, взаимодействие материала с окружающей средой, переход вещества из одного состояния в другое под влиянием перераспределения связей между атомами в молекулах, изменения в структуре молекул и других химических форм движения элементарных частиц. Относительная стабильность структуры и внешней формы макроскопических тел обусловлена определенными связями и отношениями структурных элементов, а формы изменений и переходов их состояний проявляются в неизбежных тепловых, тепломассообменных явлениях, процессах кристаллизации и т.п.
Микроструктура и ее изменение изучаются с помощью оптических методов, электронной микроскопии, дифференциально-термического анализа, рентгенографии и др. На основании сравнительно простого измерения, произведенного на плоскости наблюдения, расчетным путем устанавливается содержание основного ключевого элемента структуры в объеме материала.
В зависимости от характера связей контактируемых частиц однородные микроструктуры подразделяются на коагуляционные, конденсационные и кристаллизационные.
Коагуляционными называют структуры, в образовании которых участвуют сравнительно слабые силы молекулярного взаимодействия между частицами – вандерваальсовы силы сцепления, действующие через прослойки жидкой среды.
Конденсационными называют структуры, возникающие при непосредственном взаимодействии частиц или под влиянием химических соединений в соответствии с валентностью контактирующих атомов или под влиянием ионных и ковалентных связей.
Кристаллизационными называют структуры, образовавшиеся путем выкристаллизовывания твердой фазы из расплава или раствора и последующего прямого срастания отдельных кристаллов в прочный их агрегат, в том числе под влиянием химических связей.
Академик П.А. Ребиндер, разделивший микроструктуры на эти три разновидности, отмечал возможным, и даже более типичным, образование смешанных структур как совокупности двух или трех однородных, например кристаллизационно-коагуляционной структуры и т.п. При определенных условиях возможен самопроизвольный переход с различной скоростью коагуляционной структуры в конденсационно-кристаллизационную и т.п. С реальным характером микроструктур связаны в известной мере представления об их качественных характеристиках. Так, например, при коагуляционных структурах почти всегда наблюдается пониженная прочность вещества, способность к самостоятельному восстановлению структуры, разрушенной под влиянием механического воздействия, например вибрирования. Конденсационные и особенно кристаллизационные структуры придают веществу повышенную прочность, но вместе с тем усиливают его хрупкость, снижают тиксотропность. Некоторые модификации кристаллов одного вещества могут иметь низкую и очень высокую твердость и прочность.
Микроструктура в ИСК распространяется на вяжущую часть. Для придания вяжущему веществу необходимого качества вводят дополнительные активные компоненты – добавки. Размеры их частиц соизмеримы с размерами частиц исходных вяжущих веществ и возникающих новообразований, поэтому они являются элементом микроструктуры ИСК.















