144412 (727662), страница 2
Текст из файла (страница 2)
Если превалируют положительные ионы тяжелых' металлов то высокая смачиваемость обеспечивается при контакте с маслом, и тогда поверхность твердых частиц относится к олеофильной. При полном смачивании в других жидкостях частицы характеризуются как лиофилъные, причем независимо от разновидное™ жидкой среды полное смачивание указывает на способность твердых частиц к растворимости в ней с образованием истинных растворов как гомогенных систем. Следовательно, лиофильность связана с малым межфазным натяжением, устойчивостью поверхностей к взаимному слипанию и растворимости.
Более характерным процессом при перемешивании компонентов является формирование гетерогенной системы, которая отличается от гомогенной наличием двух или большего количества фаз, контактирующих между собой по поверхностям раздела.
Характер поверхности твердых тел можно существенно изменить добавлением поверхностно-активных веществ, когда, например, гидрофильная поверхность может стать гидрофобной или гидрофобная поверхность – гидрофильной. Вводимые в жидкую среду поверхностно-активные вещества широко используют для повышения смачиваемости поверхности твердых тел, что основано на снижении разности полярностей между поверхностью частиц твердого тела и жидкостью.
С увеличением интенсивности принудительного перемешивания уменьшается толщина диффузионного слоя, в пределах которого протекают процессы самопроизвольного выравнивания концентраций, ускоряется образование гетерогенной системы в целом. Эта скорость возрастает при непрерывном обновлении поверхности контакта и при возрастании поверхности твердой или жидкой фазы, например, при перемешивании по принципу противотока, к тому же нередко совмещаемого с дополнительной диспергацией твердого компонента или «кипящем слое».
Гетерогенный процесс часто сопровождается возникновением и накапливанием в смеси новой фазы в результате выделения растворенного вещества из пересыщенного раствора, протекания химических реакций, в частности в твердой фазе, с образованием соответствующих соединений, формирования пузырьков газа или пара и др. Наибольшее количество новообразований возникает под влиянием вводимых в смесь катализаторов. Для замедления реакций пользуются не положительными катализаторами, ускоряющими реакцию, а отрицательными – ингибиторами.
Среди гетерогенных процессов немалое значение в структурообразовании конгломератов имеют физическое поглощение и химическое – хемосорбция. Из окружающей среды сорбируются те вещества, которые способны уменьшить поверхностную энергию, что соответствует так называемой адсорбции. Возможен и обратный процесс – увеличение энергии, например величины поверхностного натяжения, за счет частичной десорбции, что означает отрицательную адсорбцию. Повышение температуры и понижение давления, а также снижение концентрации адсорбируемого вещества способствуют десорбции ингредиента, ранее физически поглощенного адсорбентом.
Структурообразование с участием поверхностно-активных веществ происходит с предварительным образованием на поверхности моно- и полимолекулярных слоев. Прочность фиксации адсорбционного слоя обусловлена величиной поверхностной энергии, природой адсорбента, но не величиной его поверхности. Последняя же предопределяет количество вещества, адсорбируемого из раствора. Но поверхность может не полностью покрываться адсорбционным слоем. Степень насыщения ее адсорбатом при данной температуре зависит от концентрации адсорбируемого вещества в окружающей среде.
Свежеприготовленная смесь обладает определенной удобообрабатываемостью, что выражается в ее реальной способности воспринимать технологические операции по формованию и уплотнению изделий.
Смеси с весьма малой вязкостью пракически не требуют уплотнения при формовании изделий или покрытий, что составляет значительное технологическое удобство. Для воспроизведения литьевой технологии в смесь вводят нередко соответствующие пластификаторы или даже суперпластификаторы. Введенные даже в малых количествах они способствуют резкому понижению вязкости смеси, облегчая формование изделий и в том случае, когда их очертания отличаются повышенной сложностью. Той же цели достигают дополнительным увеличением количества жидкостной среды в смеси, что должно быть каждый раз обосновано с общих позиций оптимизации структуры и требований к конкретным видам оптимальных структур.
При использовании смесей с повышенной вязкостью, обладающих на реологической кривой условным динамическим пределом текучести и предельным напряжением сдвига, важно не допустить при формовании напряжений, способных разрушить сплошность изделия. Так, например, в некоторых случаях отмечается образование дефектов структуры, если допустить
напряжение в массе, превышающее Р2. Опыт показывает, что для хорошо формующихся смесей величина отношения должна быть не ниже 10-6. Конкретные и точные пределы реологических характеристик зависят от разновидности смеси и технологического способа формования – пластичного, вибрационного без пригруза или с пригрузом и т.п.
Формование изделий сопряжено, как правило, с плотной укладкой смеси, зернистых или другого вида заполнителей.
В зависимости от разновидности смеси формование производится с использованием укладчиков, прессов, экструдеров, каландров и других машин. Выбор оптимального способа формования и уплотнения зависит от характера исходного сырья и массовости производства, требуемых свойств и вида изделий. Но при всех способах важно обеспечить связность и начальную прочность изделий с последующим упрочнением их на других стадиях обработки.
Во многих технологиях формование и уплотнение смеси совмещаются в одну операцию, в результате чего химические и физико-химические процессы, обеспечивающие структурообразование на микро- и макроуровнях, протекают также одновременно. К ним относятся тиксотропное разжижение и упрочнение, массо- и теплообмен, перемещение заполняющей и вяжущей частей относительно друг друга с образованием плотной структуры к концу выполнения такой совмещенной операции. Естественно, что в этот период не прекращаются главные структурообразующие процессы – сорбционные, растворения и другие процессы, которые, подобно тому как это было на стадии перемешивания смеси, завершаются возникновением новых соединений и фаз, хотя и в сравнительно ограниченных количествах. Гораздо в больших размерах они выделяются на последующих стадиях технологии, например при тепловой обработке отформованных и уплотненных изделий.
К весьма значительному технологическому переделу, влияющему на структурообразование ИСК, как и других материалов, относится специальная обработка отформованных и уплотненных изделий с помощью одного, двух или большего числа внешних воздействий на материал в некотором последовательном или комбинированном порядке. Обработка может быть тепловой, тепло-влажностной, химической, электрофизической, автоклавной, вакуум-пропиточной, радиационной и др. Основная цель обработок – обеспечить развитие процессов микро- и макроструктурообразования с возможно более полным переводом систем из устойчивого состояния в термодинамически устойчивое. И хотя соответствующие процессы могут продолжаться и после произведенной обработки, в том числе в эксплуатационный период работы конструкции, однако большинство их протекает на стадии обработки, реже – на стадии выдерживания изделий в обычных, «нормальных» условиях.
Эффективность обработки характеризуется постепенным или быстрым упрочнением структуры свежеизготовленных изделий с переходом ее в твердое или твердообразное состояние. Отвердевает в основном вяжущая часть, поскольку другая заполняющая часть конгломерата состоит из смеси уже твердых компонентов. В вяжущей части формируется либо одна новая фаза, либо их может быть несколько. Новая фаза в виде химических соединений, возникающих под влиянием хемосорбционных реакций на поверхности твердых частиц или в растворе, вначале появляется в виде скопления микрозародышей как центров реакции и их развития с увеличением в размерах до мельчайших кристалликов. Затем продукты химических реакций выделяются в самостоятельную фазу, концентрация которой со временем нарастает.
Кроме химических реакций к образованию новой фазы приводит кристаллизация растворенного вещества из пересыщенного раствора.
Пересыщенный раствор обладает сравнительно небольшой термодинамической устойчивостью. В соответствии с современными взглядами сначала появляются зародыши новой фазы в виде скопления малого числа молекул, образования ассоциаций частиц при столкновениях в растворе отдельных ионов растворенного вещества.
На определенном этапе частицы-зародыши достигают критического размера, при котором каждая обладает достаточной поверхностной энергией, чтобы вызвать дополнительное адсорбирование частиц растворенного вещества. Увлекаются и мельчайшие твердые частицы других веществ, находящихся в системе, в том числе частиц новообразований. Зародыши становятся, таким образом, центрами кристаллизации. Последние выделяются сначала в виде аморфных частичек, которые обычно с большой скоростью переходят в кристаллическое состояние с укрупнением за счет наслоения вещества на гранях кристалликов. Большое влияние на свойства оказывает характер установившегося контакта и связей между отдельными кристаллами, особенно когда они состоят не из одного, а из двух, трех и большего числа их видов, например, в твердых сплавах или в продуктах кристаллизации из сложных растворов. Значительное влияние на прочность, деформативность и другие свойства оказывает контактирование кристаллов или их обломков через тонкие прослойки инородного вещества, нередко находящегося в стеклообразном состоянии.
Стеклообразные вещества характеризуются, во-первых, изотропностью и, во-вторых, способностью при нагревании переходить постепенно в жидкое состояние. Известно, что кристаллическое вещество полностью переходит в жидкое состояние при одной характерной для него постоянной температуре. Возможен самопроизвольный переход вещества из стеклообразного в кристаллическое состояние, сопровождаемый выделением в небольших количествах теплоты, преодолением энергетического барьера, связанного с образованием вокруг частиц двойных адсорбционных и ионных оболочек, прослоек среды повышенной вязкости. В технологии этот барьер нередко преодолевается наложением дополнительных механических воздействий на твердеющую систему.
В различных видах вяжущего вещества устанавливаются после отвердения системы определенные соотношения объемов кристаллической и аморфной фаз, которые под действием эксплуатационных факторов могут претерпевать отклонения как за счет дополнительного выделения новообразований, так и за счет упорядочения в расположении частиц стекловатой фазы с постепенным переходом ее в кристаллическое, в той или иной мере деформированное состояние.
К процессам структурообразования и сопутствующим им явлениям относятся также контракция и усадка, экзотермический и эндотермический эффекты, релаксации и ретардации.
Контракция состоит в самопроизвольном сжатии системы с уменьшением ее первоначального объема в основном в связи с образованием новых химических соединений, с переходом некоторой доли объемной жидкой среды в химически связанное состояние. Поскольку продукт реакции является, как правило, новой фазой микро- и макроструктуры, то возникающая пористость оказывает существенное влияние на качество этой материальной системы.
Усадка – уменьшение в объеме, которое происходит под влиянием сжимающих капиллярных сил, перехода твердых компонентов в жидкое состояние с последующим заполнением пор и пустот жидкой средой, испарения части жидкой среды или ее синерсзиса, снижения температуры, в том числе вследствие эндотермического эффекта. Общая усадка состоит из физической и химической усадок.
В отдельных материальных системах вместо усадки наблюдается разуплотнение с увеличением объема конгломерата или вяжущей части. Это явление происходит вследствие набухания, полиморфного превращения, химического или физико-химического присоединения большого количества жидкой среды с увеличением в объеме аморфных или кристаллических новообразований, расширения объема при повышении температуры, в частности за счет экзотермических эффектов.
В результате усадки и набухания, тем более повторяющихся в технологический период изготовления конгломерата или в эксплуатационный период, нередко возникают самопроизвольные напряжения в материале и, как следствие, образование микротрещин с возможным ухудшением физико-механических свойств строительных изделий. Различными приемами: регулированием режима отвердения, введением дополнительных компонентов в смесь и другими – удается уменьшить или полностью исключить влияние усадочных напряжений или деформаций, связанных с разуплотнением структуры.















