STAT1 (727090), страница 3

Файл №727090 STAT1 (Общая теория статистики) 3 страницаSTAT1 (727090) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

- сумма частот ряда

- сумма накопленных частот предшествующих медианному интервалу

- частота медианного интервала

1. Общее понятие о вариации.

Вариацией называется различие значений признака у отдельных единиц совокупности.

Вариация возникает в силу того, что отдельные значения признака формируются по влияние большого числа взаимосвязанных факторов. Эти факторы часто действуют в противоположных направлениях и их совместное действие формирует значение признаков у конкретной единицы совокупности. Необходимость изучения вариаций связана с тем, что средняя величина, обобщающая данные статистического наблюдения, на показывает как колеблется вокруг нее индивидуальное значение признака. Вариации присущи явлениям природы и общества. При этом революция в обществе происходит быстрее, чем аналогичные изменения в природе. Объективно существуют также вариации в пространстве и во времени.

Вариации в пространстве показывают различие статистических показателей относящихся к различным административно-территориальным единицам.

Вариации во времени показывают различие показателей в зависимости от периода или момента времени к которым они относятся.

2. Меры вариаций.

К примерам вариаций относятся следующие показатели:

1. размах вариаций

2. среднее линейное отклонение

3. среднее квадратическое отклонение

4. дисперсия

5. коэффициент

1. Размах вариаций является ее простейшим показателем. Он определяется как разность между максимальным и минимальным значение признака. Недостаток этого показателя заключается в том, что он зависит только от двух крайних значений признака (min, max) и не характеризует колеблимость внутри совокупности. R=Xmax-Xmin.

2. Среднее линейное отклонение является средней величиной абсолютных значений отклонений от средней арифметической. Оно определяется по формуле:

- простая

Отклонения берутся по модулю, т.к. в противном случае, из-за математических свойств средней величины, они всегда были бы равны нулю.

4. Дисперсия (средний квадрат отклонений) имеет наибольшее применение в статистике как показатель меры колеблимости.

Дисперсия определяется по формулам:

пример: стр. 36

Дисперсия является именованным показателем. Она измеряется в единицах соответствующих квадрату единиц измерения изучаемого признака. В данном случае она показывает, что средний размер отклонения прибыли по 50 предприятиям от средней прибыли составляет 1,48.

Дисперсия может быть также определена по формуле:

;

3. Среднее квадратическое отклонение определяется как корень из дисперсии.

По исходным данным приведенным выше, среднее квадратическое отклонение равно:

5. Коэффициент вариаций определяется как отношение среднего квадратического отклонения к средней величине признака, выраженное в процентах:

Он характеризует количественную однородность статистической совокупности. Если данный коэффициент < 50%, то это говорит об однородности статистической совокупности. Если же совокупность не однородна, то любые статистические исследования можно проводить только внутри выделенных однородных групп.

3. Дисперсия альтернативного признака.

Альтернативными называются 2 взаимоисключающих друг друга признака. То признаки, которыми каждая отдельная единица совокупности либо обладает, либо не обладает. Наличие альтернативного признака принято обозначать через единицу, а отсутствие через 0. Долю единиц обладающих данным признаком обозначают через p (п), а долю единиц на обладающих данным признаком обозначают через q. При этом p+q=1.

Дисперсия альтернативного признака определяется по формуле:

4. Виды дисперсий. Привила их сложения.

Если исследуемую статистическую совокупность разделить на группу, то для каждой из них можно определить групповые средние и дисперсии. Эти дисперсии будет характеризовать колеблимость изучаемого признака каждой отдельной группе. На этой основе можно определить среднюю изнутри групповых дисперсий.

ni=fi - численность единиц в отдельных группах

Эта дисперсия характеризует случайную вариацию признака, на зависящую от фактора положенного в основание группировки.

Вычисляется также межгрупповая дисперсия .

и ni=fi соответственно средние и численности по отдельным группам.

Эта дисперсия характеризует вариацию по влиянием группировочного признака. Сумма средней изнутри групповых и межгрупповой дисперсий позволяет определить общую дисперсию.

Данное равенство называют правилом сложения дисперсий.

; , т.е. существует тесная зависимость между изготовлением деталей и другими показателями.

Если значения исследуемого признака выражаются в долях или коэффициентах, то правило сложения дисперсий выражается следующими формулами:

ni - численность единиц в отдельных группах

pi - доля изучаемого признака во всей совокупности

средняя из внутригрупповых дисперсий для долей признаков

1. Виды и формы зависимости между социально-экономическими явлениями.

Многообразие взаимосвязей в которых находятся социально-экономические явления, рождают необходимость в их классификации.

По видам различают функциональную и корреляционную зависимость.

Функциональной называют такую зависимость, при которой одному значению факторного признака X соответствует одно строго определенное значение результативного признака Y.

В отличие от функциональной зависимости, корреляционная выражает такую связь между социально-экономическими явлениями, при которой одному значению факторного признака X могут соответствовать несколько значений результативного признака Y.

По направлению различают прямую и обратную зависимость.

Прямой называют такую зависимость, при которой значение факторного признака X и результативного признака Y изменяются в одном направлении. Т.о. при увеличении значения X, значения Y в среднем увеличиваются, а при уменьшении X - Y уменьшается.

Обратная зависимость между факторным и результативным признаками, если они изменяются в противоположных направлениях.

2. Статистические методы изучения взаимосвязей.

Важное место в статистическом изучении взаимосвязей занимают следующие методы:

1. Метод приведения параллельных данных.

2. Метод аналитических группировок.

3. Графический метод.

4. Балансовый метод.

5. Индексный метод.

6. Корреляционно-регрессионный.

1. Сущность метода приведения параллельных данных заключается в следующем:

Исходные данные по признаку X располагаются в порядке возрастания или убывания, а по признаку Y записываются соответствующие им показатели. Путем сопоставления значений X и Y, делается вывод о наличии и направлении зависимости.

3. Сущность графического метода составляет наглядное представление наличия и направления взаимосвязей между признаками. Для этого значение факторного признака X располагается по оси абсцисс, а значение результативного признака по оси ординат. По совместному расположению точек на графике делают вывод о направлении и наличии зависимости. При этом возможны следующие варианты:

а , б/ (вверх) , в\ (вниз).

Если точки на графике расположены беспорядочно (а), то зависимость между изучаемыми признаками отсутствует.

Если точки на графике концентрируются вокруг прямой (б)/, зависимость между признаками прямая.

Если точки концентрируются вокруг прямой (в)\, то это свидетельствует о наличии обратной зависимости.

На основе метода параллельных данных и графического метода, могут быть рассчитаны показатели, характеризующие степень тесноты корреляционной зависимости.

Наиболее кратным из них является коэффициент знаков Фехнера. Он рассчитывается по формуле:

C - сумма совпадающих знаков отклонений индивидуальных значений признака от средней.

H - сумма несовпадений

Данный коэффициент изменяется в пределах (-1;1).

Значение KF=0 свидетельствует об отсутствии зависимости между изучаемыми признаками.

Если KF=1, то это говорит о наличии функциональной прямой (+) и обратной (-) зависимости. При значении KF>0,6 делается вывод о наличии сильной прямой (обратной) зависимости между признаками. Кроме того на основе исходных данных о факторном и результативном признаках, может быть рассчитан коэффициент корреляции рангов Спирмена, который определяется по формуле:

- квадраты разности рангов

(R2-R1), n - число пар рангов

Данный коэффициент, как и предыдущий, изменяется в тех же пределах и имеет одинаковую с KF экономическую интерпретацию.

В тех случаях, когда значение X или Y выражаются одинаковыми показателями, коэффициент корреляции рангов рассчитывается по следующей формуле:

Характеристики

Тип файла
Документ
Размер
230,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее