135792 (722633), страница 3

Файл №722633 135792 (Исследование реакции нижней ионосферы на высыпание энергичных частиц из радиационных поясов Земли) 3 страница135792 (722633) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Глубина проникновения в атмосферу протонов различных энергий показана на рис. 9 (2). Поскольку упругие столкновения несущественны для протонов средних энергий, глубина проникновения изменяется в зависимости от угла вхождения в атмосферу, в противоположность тому, что происходит с энергичными электронами. Протон,

Рис. 7. Профили скорости потери энергии для электронов с Wо=6 кэВ и углом падения Q.



Рис. 8. профили скорости потери энергии для электронов с Wо=50 кэВ.

Рис. 9. Глубина проникновения протонов в атмосферу в функции питч-угла.


входящий вертикально в атмосферу, проникает приблизительно на 20 км глубже, чем протон с зенитным углом 80*.

На рис. 10 (2), представлены вертикальные профили скорости потери энергии первоначально изотропных моноэнергетических потоков протонов. Горизонтальное рассеяние, вызванное процессами перезарядки, в вычислениях не учитывалось. Вычисления основаны на коэффициентах поглощения, приведенных на рис. 11 (2).

Высота максимальной потери энергии уменьшается от ~ 200 км до ~ 90 км, в то время как энергия протонов возрастает от 1 до 1000 кэВ. Новые модели атмосферы, возможно, каким-то образом уменьшать эти высоты, но маловероятно, чтобы в результате этого профили сместились более чем на 5 км.

Вследствие существования градиента плотности в атмосфере «толщина» профилей потери энергии уменьшается с возрастанием энергии протонов, и к тому же максимум в профиле резко возрастает. Следовательно, при изменении энергии протонов от 1 до 1000 кэВ максимальные потери энергии увеличиваются в 60 000 раз.

(Электроны и протоны по-разному ведут себя, проникая в ионосферу. Электроны, после небольшого числа столкновений, «забывают» о своем первоначальном направлении. Протоны же, в процессе перезарядки, проникают гораздо глубже, так как нейтральный атом не испытывает кулоновского рассеяния.)



Рис. 10. Профили скорости потерь энергии протонов с начальной энергией Wо, кэВ.


Рис. 11. Скорость потери энергии для протонов в воздухе в зависимости от энергии.



3.Изучение гидродинамических методов исследований.

(В этой главе будут рассмотрены различные типы взаимодействий волн с частицами.)

Рассмотрим другой канал связи – волновой, осуществляющий передачу электрических полей и продольных токов.

Волновой канал настолько тесно связывает элементы магнитосферно-ионосферной системы, что можно говорить о единой электрической цепи, в которой почти любой процесс является совместным продуктом магнитосферы и ионосферы. Некоторые из высыпаний, в частности дискретные дуги полярных сияний, управляются из ионосферы. Обратная связь осуществляется посредством волнового канала. Схема обратной связи выглядит следующим образом. Вторгающийся поток меняет проводимость ионосферы. В присутствии внешнего электрического поля область меняющейся проводимости генерирует гидромагнитную волну, направленную геомагнитным полем. Распространяясь в магнитосферу, гидромагнитная волна взаимодействует с частицами, заставляя их при некоторых условиях высыпаться, (но пока не известен конкретный механизм взаимодействия гидромагнитной волны с частицами). Можно предложить два варианта передачи этой энергии частицам. В первом варианте волна меняет магнитное поле в силовой трубке, модулируя поток энергичных частиц. Во втором – происходит ускорение «холодных» частиц в продольном электрическом поле волны.

3.1. Модуляция потоков энергичных частиц гидромагнитными волнами.

Предположим, что существует фоновое высыпание частиц, обусловленное, например, диффузией в конус потерь. Найдем глубину модуляции высыпающегося потока в зависимости от амплитуды геомагнитных пульсаций, которые можно связывать со стоячей альвеновской волной, захваченной между магнитосопряженными участками ионосфер различных полушарий. Известно, что направляемые альвеновские волны не сопровождаются сжатием магнитного поля. Однако, в неоднородном магнитном поле каждая колеблющаяся магнитная силовая линия будет испытывать субстанциональные сжатия и разрежения. Магнитное поле в такой колеблющейся трубке меняется по закону:

, (4)

где - колебательная скорость трубки. Плазма, вмороженная в трубку, колеблющуюся в меридиальной плоскости, испытывает периодическое нагревание и охлаждение, что приводит к вариациям частиц в трубке с периодом ее поперечных колебаний. Вариации потока частиц на уровне ионосферы существенно зависят от характера изменений питч-углового распределения частиц. Рассмотрим четыре случая, отличающихся характером изменения функции распределения, а также энергией частиц. Вначале найдем связь глубины модуляции с амплитудой колебаний в экваториальной плоскости , а затем с амплитудой пульсаций на поверхности Земли.

3.1.1. Случай быстрой изотропизации. Относительное изменение потока может быть найдено из теоремы Лиувилля и определяется выражением:

. (5)

где - поток частиц в единице телесного угла и в единичном интервале энергий , - возмущенные величины.

Поперечные радиальные колебания трубки сопровождаются изменением ее объема. Предполагая процесс адиабатическим, из уравнения адиабаты находим связь между изменением энергии частиц и изменениями объема:

. (6)

Рассмотрим первую гармонику колебаний. Считаем для простоты, что объем трубки пропорционален ( - геоцентрическое рассеяние до трубы в экваториальной плоскости в радиусах Земли). Имеем:

. (7)

Подставляя (7.3) и (7.4) в (7.2), получаем для зависимости

. (8)

Последнее равенство написано для , .

3.1.2. Случай сохранения адиабатических инвариантов. Этот случай, вероятно, реализуется в спокойное время вдали от ярких форм сияний. Высыпание частиц в ионосферу связано при этом с сокращением магнитных силовых линий в процессе стационарной конвекции магнитосферной плазмы. Хотя с приближением магнитной силовой линии к Земле питч-углы заряженных частиц увеличиваются, конус потерь увеличивается еще быстрее. Высыпающийся поток примерно равен , где и - концентрация частиц и скорость их радиального дрейфа в экваториальной плоскости. Модуляция потока имеет вид:

. (9)

Где - возмущение скорости, связанное с гидромагнитной волной; - частота волны; - радиус Земли. Полагая частоту равной частоте резонансных колебаний магнитной трубки ( ), получаем:

. (10)

Последнее равенство выполняется при характерных значениях км/с и км/с.

3.1.3. Модуляция инкремента нарастания свистовой моды. Предполагается, что фоновое высыпание вызвано диффузией частиц в конус потерь из-за резонансного взаимодействия со свистовой модой. Эта мода непрерывно генерируется благодаря анизотропии распределения электронов по питч-углам. Инкремент нарастания свистовой моды зависит от внешнего магнитного поля. Гидромагнитная волна, возмущая магнитное поле, изменяет инкремент свистовой моды, что приводит к модуляции коэффициента диффузии и, следовательно, к модуляции высыпающегося потока. В качестве гидромагнитной волны мы принимали магнитозвуковую. Однако, как видно из формулы (4), направляемая альвеновская волна в неоднородном поле также сопровождается субстанциональными изменениями магнитного поля.

Если диффузия в конус потерь не слишком велика, высыпающийся поток равен:

, (11)

где - фоновый поток; - коэффициент анизотропии электронов по питч-углам; и -температуры электронов поперек и вдоль внешнего магнитного поля; -амплитуда малых вариаций. Принимая для экваториальной плоскости , и считая колебания малыми, получаем из (11) глубину модуляции

. (12)

Сравнение (12) с (8) показывает, что коэффициент анизотропии обеспечивает диффузию, промежуточную между сильной и слабой. Уменьшение приводит к уменьшению диффузии и к увеличению глубины модуляции. В данном случае глубина увеличивается за счет уменьшения фононовоо потока.

3.1.4. Модуляция потоков высокоэнергичных частиц. При рассмотрении трех предыдущих случаев предполагалось, что частицы колеблются вместе с магнитной трубкой. При характерном диаметре трубки в экваториальной плоскости и периоде колебаний условие сохранения частиц в трубке выполняется для энергий . Частицы больших энергий будут протекать через трубку (вследствие градиентного дрейфа), почти не реагируя на ее колебания. Можно считать, что магнитная силовая трубка колеблется на неподвижном фоне энергичных частиц. Колеблющаяся трубка, подобно зонду, будет проектировать в свое основание частицы из разных областей ионосферы. Магнитосфера заселена энергичными частицами неоднородно. Поэтому поток частиц, высыпающихся из трубки, будет флуктуировать. Полагая, что фоновый поток энергичных частиц меняется по закону:

, (13)

получаем глубину модуляции:

. (14)

Характеристики

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6689
Авторов
на СтудИзбе
290
Средний доход
с одного платного файла
Обучение Подробнее