N_N_EOM (722406), страница 4

Файл №722406 N_N_EOM (Розробка управляючого і операційног вузлів ЕОМ) 4 страницаN_N_EOM (722406) страница 42016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Представимо число у вигляді цілого. Це представлення має вид “знак + модуль”. Нуль в знаковому біті означає, що число додатнє, а одиниця – що воно від’ємне. Для числа, модуль якого дорівнює нулю, в знаковому біті завжди формуєтсья одиниця.

Будемо використовувати регістри AC – накопичуючий регістр,
MQ – регістр частки, SR – запам’ятовуючий регістр, SC – лічильник зсувів. Використовується схема паралельного суматора і регістр DVOV. AS, MQ, SR, складаються з двох частин: в одній зберігається знак, а в другій – модуль числа. Отже, ми використовуємо субрегістри для знаку AS(S), MQ(S), SR(S)
і субрегістри модуля AS(M), MQ(M), SR(M). Субрегістром називається частина регістру, сукупність бітів якої мають особливий зміст. Об’єднання декількох субрегістрів або регістрів при виконанні спеціальної операції в один регістр називається касрегістром.

Регістр DVOV сигналізує про стан переносу при діленні.

Ми не будемо його використовувати.

Структура:

AC(M) = AC(1 – 23),

SR(M) = SR(1 – 23),

MQ(M) = MQ(1- 23).

AC(S, R, Q, 1- 23),

SR(S, 1 - 23),

MQ(1 – 23),

SC(0 – 5),

C.

Паралельний суматор:

ADD(R, Q, 1 – 23) = ADSR(R, Q, 1 – 23) EXOR ADAC(R, Q, 1 – 23)
EXOR C(R, Q, 1 – 23),

C(R, Q, 1 – 22) = ADSR(Q, 1 – 23)*ADAC(Q, 1 – 23) + ADAC(Q, 1 – 23)
*C(Q, 1 – 23) + C(Q, 1 – 23) * ADSR(Q, 1 – 23), C(23) = 0.

Опис виводів Z:

Z(R, Q, 1 – 23) = 0 – 0 – AC(M) add2 0 – 0 – SR(M) – 0.

Опис оператора add2:

W(R, Q, 1 – 23) = X(R, Q, 1 – 23) add2 Y(R, Q, 1 – 24)

C(23) = Y(24),

C(R, Q, 1 – 22) = X(Q, 1 – 23)*Y(Q, 1 – 23) + Y(Q, 1 – 23)*C(Q, 1 – 23) + C(Q, 1 – 23)*X(Q, 1 – 23)

W(R, Q, 1 – 23) = X(R, Q, 1 – 23) EXOR Y(R, Q, 1 – 23) EXOR
C(R, Q, 1 – 23).

Тут в регістрі АС є біт АС(Q), який міститься між знаковим бітом і старшим бітом значущої частини регістру. В цьому біті міститься перенос з старшого біту значущої частини, який утворюється при додаванні або віднімані. Розряд АС(R) містить перенос з біту АС(Q).

В нашій схемі звичайно використовуються однобітні повні суматори,
що мають по три входи і два виходи. На схемі 4.3 i-ий біт першого
доданку – ADAC(i), j – біт другого доданку ADSR(i), i – ий біт переносу – C(i),
(i – 1) – й біт переносу C(i – 1) і i – ий біт суми – ADD(i), де i – номер розряду паралельного суматора.

C(i)

ADAC(R, Q, 1 – 35)


ADAC(i)


ADSR(i)

C(35)

ADSR(R, Q, 1 – 35)




Паралельний
суматор


ADD(R, Q, 1 – 35)


ADD(i)

C(i-1)

C(R, Q, 1 – 34)



малюнок 4.3 та 4.4 (Чу стр. 134)

На малюнку 4.4 входи ADAC(R, Q, 1 – 23) і ADSR(1 - 23) з’єднані з виходами регістрів АС(R, Q, 1 –23) і SR(1 – 23) відповідно. На входи ADSR(R, Q) сигнали з регістру SR звичайно не поступають. Замість цього при необхідності на цих шинах формуються константи 0 або 1. Вхід С(23) на якому повинен бути 0 є входом переносу для крайнього правого біту суматора. Входи
ADD(R, Q, 1 – 23) являють біти суми, а виходи С(R, Q, 1 – 23) – переноси для всіх 26 однобітних повних суматорів. Схема паралельного суматора зображена на малюнку 4.5.



малюнок 4.5 (Чу стр. 134)

В алгоритмі ділення виконується перевірка однієї з спеціальних вихідних шин паралельного суматора. Частина цих шин зв’язана з входами субрегістру АС(M),
а друга – з входами субрегістру SR(M). Це і є виводи Z.

Оператор add2 виконує додавання значущих частин двох 26 – бітних двійкових чисел; у цьому випадку вхідний перенос С(23) = 0. Його зручно використовувати також при додаванні додаткового коду від’ємника з зменшуваного (вілнімання); в такому випадку вхідний перенос С(23) = 1.
Таким чином, вхідний пернос розглядається як додатковий вхід паралельного суматора; потрібна модифікація додавання описується оператором add2.

2.8.1.1 Ділення (Чу стр. 144 – 148)

При діленні чисел, представлених у форматі з фіксованою комою ділене знаходиться в касрегістрі, який додається з регістрів АС і MQ, а дільник – в регістрі SR; частка поміщається в регістр MQ, а залишок – в регістр AC.
Дільник після виконання операції залишається в регістрі SR; ділене в касрегістрі губиться. Алгоритм ділення побудований на основі використання методу порівняння. Його зручно розділити на дві частини: ініціалізація (малюнок 4.11) і відповідно ділення (малюнок 4.12)
















малюнок 4.11 (Чу стр. 144)



















малюнок 4.12 (Чу стр. 145)

При ініціалізації перевіряється чи не буде переповнення, і визначається знак частки. Переповнення при діленні визначається шляхом віднімання діленого з дільника (субрегістри AC(M) і SR(M)). При відніманні до дільника додають ділене з субрегістру AC(M) в оберненому коді. Якщо перевірка показує, що значення на шині суми Z(Q) = 0 то з цього слідує, що ділене з AC(M) більше або дорівнює дільнику з SR(M). При переповненні в регістр DVOV засилається одиниця, і процес ділення завершується. Якщо ж перевірка показує, що Z(Q) = 1, то процес ініціалізації продовжується і визначається знак частки. Знак частки записується як нуль, якщо знакові біти AC(S) і SR(S) співпадають; в іншому випадку в M(Q) засилається одиниця. Потім проводиться запуск процесу ділення.

При діленні значення часткового залишку в субрегістрі AC(M) зберігається в оберненому коді. Процес починається з засилки в регістр лічильника зсувів SC константи 2310. Далі вміст касрегістру AC(M) – MQ(M) зсувається вліво на один біт; одночасно біт MQ(1) інвертується і переміщується в біт AC(23) для того, щоб частковий залишок в субрегістрі AC(M) залишався в оберненому коді. Дільник з субрегістру SR(M) порівнюється з частковим залишком AC(M). Якщо порівняння показує, що Z(Q) = 0, то це означає, що частковий залишок з AC(M) більше дільника з SR(M) або дорівнює йому. В цьому випадку в біт MQ(23) засилається одиниця і одночасно дільник з SR(M) додається до часткового залишку з AC(M). Якщо ж Z(Q) = 1, то це означає, що дільник з SR(M) більше часткового залишку AC(M); у цьому випадку пересилка і додавання не відбуваються. Далі вміст лічильника зсувів SC зменшується на одиницю і перевіряється на нуль. Якщо вміст SC <> 0, то алгоритм продовжується до вичерпання SC. Далі частковий залишок в AC(M) перетворюється в вихідне представлення шляхом інвертування всіх бітів. На цьому процес ділення завершується.

Процедурний опис ділення:

Ділене = + 00001111 = + 1510,

Дільник = - 0011 = - 310,

Частка = - 0101 = - 510,

Залишок = + 0000 = 0.

AC(R, Q, M)  0 – 0 – AC(M)’;

IF (Z(Q) = 1) THEN (DVOV  1, GOTO C2);

IF (SR(S) = AC(S)) THEN (MQ(S)  0) ELSE (MQ(S)  1);

SC  35;

AC(M) – MQ(M)  AC(2 – 35) – MQ(1)’ – MQ(2 – 35) – 0;

IF (Z(Q) = 0) THEN (MQ(35)  1, AC(R, Q, M)  0 – 0 – AC(M) add2
0 – 0 SR(M) – 0;

SC  countdn SC;

IF (SC <> 0) THEN (GOTO C1);

AC(M)  AC(M)’

END

2.8.1.2 Мікропрограми арифметичного пристрою
(Чу стр. 177)

Розглянемо тепер відповідність між управляючими сигналами і мікроопераціями. Процес встановлення такої відповідності розпадається на три етапи. На першому етапі вибираються управляючі сигнали для ініціалізації роботи пристрою і запуску генераторів синхро- і управляючих сигналів. Ця група сигналів генерується незалежно від мікропрограми. На другому етапі проходить прив’язка мікрооперацій команд до одної або декількох мікрокоманд, а на третьому встановлюється зв’язок між кожною мікрооперацією, що зустрічається в мікропрограмі і управляючим сигналом для неї. По результатам виконання двох цих результатів будується мікропрограма.

Мікропрограма ділення також додається з чотирьох мікрокоманд: D1, D2, D3, D4. Мікрокоманда D1 пересилає адрес операнду з регістру K в адресний регістр AD і витягує операнд з основної пам’яті.D2 – ініціалізаація; D3 - ділення; D4 – завершення.

F  CM(H),

AD  K,

SR  M(AD),

H  countup H.

F  CM(H),

AC(R, Q, M)  0 – 0 AC(M)’,

IF Z(Q) <> 1) THEN (DVOV  1, BR(1)  1)

ELSE (BR(2)  1),

IF (BR(2) = 1) THEN (MQ(S)  SR(S) EXOR AC(S), SC  35),

IF(BR(1) = 1) THEN (H  F(ADS))

ELSE (H  countup H),

IF (BR(1) = 1) THEN (DO DSET),

BR  0.

F  CM(H),

SC  countdn SC,

AC(M) – MQ(M)  AC(2 – 35) MQ(1)’ – MQ(2 – 35) – 0,

IF (Z(Q) <> 1) THEN (MQ(35)  1,

AC(R, Q, M)  0 – 0 – AC(M) add2 0 – 0 SR(M) – 0),

IF (SC = 0) THEN (H  countup H).

F  CM(H),

Характеристики

Тип файла
Документ
Размер
631 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6537
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее