N_N_EOM (722406), страница 3

Файл №722406 N_N_EOM (Розробка управляючого і операційног вузлів ЕОМ) 3 страницаN_N_EOM (722406) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)






мал. 6-8 а) (Каган стр. 214)

Початкове ділене X заноситься в PгX, а дільник Y – в старші розряди Pг1Y. Дільник зсувається вправо шляхом косої передачі з Pг1Y в Pг2Y і прямої передачі з Pг2Y в Pг1Y. Віднімання дільника виконується підсумувуванням додаткового коду дільника. Цифри частки залишків, які визначають по знаку часткових залишків, фіксується в регістрі Pг1Z шляхом послідовного занесення їх в молодший розряд Pг1Z і зсуву вмісту Pг1Z з допомогою косої передачі в Pг2Z і прямої з Pг2Z в Pг1Z.

Недоліком такого АЛП є подвійна довжина суматора і його регістрів.

2. Ділення з нерухомим дільником і зсувом вліво діленого.

Цей спосіб дозволяє будувати АЛП з суматором одиночної довжини (малюнок 6-8, б).














малюнок 6-8, б (Каган стр. 214)

Тут нерухомий дільник Y зберігається в PгY, а ділене X, зсуваючись вліво відносно Y, знаходиться в двох регістрах: старші розряди X – в Pг1X,
а молодші – в Pг2X. Ділення починається з зсуву вліво діленого X шляхом косої передачі його в PгCm і Pг3X і відповідних прямих передач в Pг1X. Далі на вхід суматора подається зсунуте вліво ділене, утворюється частковий залишок шляхом підсумовуванням додаткового коду дільника, і наступна цифра частки заноситься в звільнений при зсуві X розряд Pг2X.

Арифметично-логічний пристрій розглянутого типу широко застосовується для ділення.

Алгоритм ділення з нерухомим дільником з відновленням залишку.

1. Берутся модулі від діленого і дільника.

2. Початкове значення часткового залишку покладається рівним старшим розрядам діленого.

3. Частковий залишок подвоюється шляхом зсуву на один розряд вліво.
При цьому в звільнений при зсуві молодший розряд часткового залишку заноситься наступна цифра діленого.

4. З зсунутого часткового залишку віднімається дільник і аналізується знак результату віднімання.

5. Наступна цифра модуля частки рівна 1, якщо результат віднімання додатній, і 0, якщо від’ємний. В останньому випадку значення остачі відновлюється до того, яке було до віднімання.

6. Пункти 3, 4 і 5 послідовно виконуються для одержання всіх цифр модуля частки.

7. Знак частки плюс, якщо знаки діленого і дільника однакові, в іншому випадку – мінус.

Розглянемо тепер більш детально ділення в АЛП з нерухомим дільником. Структурна схема АЛП дана на малюнку 6-9.

































малюнок 6-9 (Каган стр. 215)

Схема містить: суматор Cm; вхідний регістр Pг1 для збереження дільника; вхідний регістр суматора PгA, в який поступає прямий або зворотній код дільника; вихідний регістр суматора PгCm, в якому утворюється частковий залишок; регістри діленого PгB (старші розряди) і Pг2 (молодші розряди); допоміжний регістр Pг2’ для зсуву діленого, тригери знаків діленого і дільника ТгЗн1 і ТгЗн2; лічильник циклів СчЦ для підрахунку числа одержаних цифр частки. Одержані в процесі ділення цифри частки заносяться в звільнені розряди Pг2’.

Мікропрограма ділення для випадку додатніх чисел приведена на
малюнку 6-10. Пояснемо процедуру відновлення остачі.


































малюнок 6-10 (Каган стр. 217)

Якщо віднімання дає від’ємний результат (См[0] = 1), то попередній частковий залишок, який зберігається в PгB, передається в PгCm, для чого попередньо обнулюється PгA. В PгCm прийом здійснюється з зсувом вліво на
1 розряд. Це забезпечує відновлення попереднього часткового залишку і зміщення його відносно дільника перед наступним відніманням.

Мікропрограма, яку ми розглядаємо, призначена для обробки додатніх чисел. А також її можна легко перетворити для обробки чисел з любими знаками,
які представленні в прямому коді. Для цього треба внести такі зміни:
після прийому операндів в PгB, Pг2 і Pг1 значення знакових розрядів X і Y передаються в тригер знака – відповідно ТгЗн1 і ТгЗн2. Потім в PгB [0] і Pг1 [0] заноситься 0, тобто виконується перехід до модулів X і Y. Розряд знаку частки встановлюється в 0 при ТгЗн1 = ТгЗн2 і в 1 в протилежному випадку.

Розглянутий метод ділення носить назву ділення з відновленням залишку. Недоліком цього методу є необхідність введення спеціального такту для відновлення залишку.

Звичайно в ЕОМ для ділення використовується другий метод – ділення без відновлення залишку.

Алгоритм ділення з нерухомим дільником без відновлення залишку.
Пункти 1-3 співпадають з алгоритмом ділення з відновленням залишку.

4. З зсунутого часткового залишку віднімається дільник, якщо залишок додатній, і до зсунутого часткового залишку додається дільник, якщо залишок від’ємний.

5. Наступна цифра модуля частки рівна 1, якщо результат віднімання додатній, і 0, якщо від’ємний.

Пункти 6, 7 співпадають з попереднім алгоритмом.

Можна показати, що часткові залишки після виконання додавання при діленні без відновлення залишку одержуються такі самі, як і залишки після зсуву відновленного залишку при діленні з відновленням залишку.

Дійсно, оскільки зсув часткового залишку на один розряд вліво є еквівалентом множення його на два, одержимо: 2*a – b = 2*(a – b) + b, (6-5),
де a – частковий залишок; b – дільник.

Аналогічно

2na = {…{[(a – b)*2 + b] + b}*2 + … + b}. (6-6)

Ділення без відновлення залишку завжди потребує для одержання одної цифри частки тільки додавання або віднімання з зсуву часткового залишку.

Мікропрограма ділення цілих додатніх чисел без відновлення залишку у своїй початковій частині співпадає з мікропрограмою ділення без відновлення залишку. Різниця з’являєтья після формування знаку частки. На малюнку 6-11 приведена частина мікропраграми ділення без відновлення залишку після мікрокоманди фіксації знаку частки.





















малюнок 6-11 (Каган стр. 219)

Блок-схема показує, що поки невизначені всі цифри частки (СчЦ <> 0),
в залежності від знаку часткового залишку або підсумовується Y (при См [0] = 1), або віднімається Y (при См [0] = 0). В одержаному новому частковому залишку аналізується знак і в ньому визначається цифра частки. Після завершення всіх циклів ділення (СчЦ = 0) видається реультат. При цьому якщо залишок від’ємний, то він відновлюється шляхом підсумуванням Y.

Ділення чисел, що представленні в залежності від знаку прямим доповнюючим кодом, можна зробити не переходячи до модулів. При цьому алгоритм ділення є подібним до розглянутих.

Відмінності заключаються в наступному (для випадку ділення без відновлення залишку):

1. Так як ділене і дільник можуть мати різні знаки, то дія з частковим залишком (додавання або віднімання Y) залежать від знаку залишку і дільника і визначаються таблицею 6-4.

Знак залишку

Знак дільника

Дія

+

+

Віднімання Y

+

-

Додавання Y

-

+

Додавання Y

-

-

Віднімання Y

таблиця 6-4 (Каган стр. 219)

Якщо знак залишку співпадає з знаком дільника, то zi = 1, інакше zi = 0.

2. Якщо X > 0 і Y < 0, то частку необхідно збільшити на одиницю.

Якщо X 0, то частку необхідно збільшити на одиницю у випадку залишку від ділення, яке не дорівнює нулю.

Якщо X < 0 і Y < 0, то частку необхідно збільшити на одиницю у випадку залишку від ділення, яка рівна нулю.

Ділення правильних дробів виконується так, як і ділення цілих.
Різниця заключається тільки у тому, що ділене має, як правило, таку ж довжину, як дільник. Але можна допустити, що ділене має ще n молодших розрядів, які рівні нулю. Тоді стає ясно, що алгоритм ділення дробів нічим не відрізняється від алгоритму ділення цілих.

2.8.1 Арифметичний пристрій з фіксованою крапкою (Чу стр. 130-135)

Арифетичний пристрій виконує арифметичні команди, що зберігаютьсяв пам’яті обчислювальної машини. У тому випадку, якщо цей пристрій додає і віднімає додаткові коди паралельно, тобто ми виконуємо арифметичні дії над всіма розрядами одночасно, то це є паралельний арифметичний пристрій.
В такому пристрої є схема паралельного суматора або паралельного віднімання.

Двійкові числа, що представляються знаковим бітом і двійковим модулем числа, в якому, між цілою і дробною частиною розміщені завжди на одному місці, називаються двійковими числами з фіксованою крапкою. Є два способи представлення таких чисел: модуль – ціле число, або модуль – простий дріб. Якщо кома розміщена між знаковим бітом і старшим бітом числа, то будь-яке число в такому форматі є дробовим. Якщо ж кома розміщена справа від молодшого біта значущої частини, то число є цілим.

Знаковий біт



1 Число 22

S

малюнок 4.1 (Чу стр. 131)

Характеристики

Тип файла
Документ
Размер
631 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6537
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее