KUR_RPY (722291), страница 2
Текст из файла (страница 2)
Межкаскадные согласующие цепи применяются в многокаскадных радиопередатчиках для преобразования входного сопротивления АЭ последующего каскада в оптимальное сопротивление на выходных электродах АЭ предыдущего каскада.
-
Связь с антенной
В диапазоне коротких волн используется очень большое количество разнообразных антенн направленных и ненаправленных. Для обеспечения работы антенны в диапазоне частот необходимо использоваться антенно – согласующее устройство связь с которым осуществляется фидером. Фидер предназначен для передачи высокочастотной энергии от источника к нагрузке. Исходя из технического задания в качестве фидера может использоваться коаксиальный кабель с волновым сопротивлением 75 Ом, например РК-75.
2. РАСЧЕТ КВАРЦЕВОГО АВТОГЕНЕРАТОРА
-
Схема автогенератора
Схема автогенератора изображена на рисунке 4, рабочая частота автогенератора 3125 кГц. В качестве активного элемента в схеме автогенератора будет применен биполярный транзистор КТ 315Б, т.к. он обеспечивает требуемую выходную мощность и может работать на рассчитываемой частоте. Параметры транзистора приведены в ПРИЛОЖЕНИИ 1.
Рис. 4.
Автогенератор представляет собой емкостную трёхточку, которая образована транзистором VT1, кварцевым резонатором ZQ1, выполняющим роль индуктивности, и конденсаторами С2 и С3. Резисторы R1, R2, R3 обеспечивают внешнее и автоматическое смещение для транзистора. Конденсатор С1 служит для блокировки резистора R3 на рабочей частоте, что исключает отрицательную обратную связь. Дроссель L к включен для того, чтобы не зашунтировать трёхточку через источник питания Eк.
-
Расчёт по постоянному току.
Задаём постоянную составляющую коллекторного тока IК0,напряжение между коллектором и эмиттером ЕКЭ и напряжение на эмиттере ЕЭ исходя из рекомендаций, в которых IК0 = (3 …10) mA, ЕКЭ = (3…10) B и ЕЭ = (2…3) B.
IК0 = 5 mA, ЕКЭ = 7 B и ЕЭ = 2 B.
Рассчитываем сопротивление автосмещения в эмиттерной цепи
R3 =ЕЭ / IК0 = 2/ 5 ∙ 10-3 = 400 Ом
Выбираем стандартное значение сопротивления R3 = 430 Ом.
Рассчитываем напряжение источника питания
EK = ЕКЭ + ЕЭ = 7 + 2 = 9 B.
Определяем ток базы
IБ0 = IК0 /β0 =5 ∙ 10–3 / 100 = 50 мкА,
где β0 – коэффициент передачи тока транзистора.
Задаём ток делителя напряжения цепи фиксированного смещения
IДЕЛ = (10…20) ∙ IБ0 = 10 ∙ 50 ∙10-6 = 500 мА.
Определяем сопротивление делителя напряжения
RДЕЛ = R1 + R2 =EK / IДЕЛ = 9 / 500 ∙ 10-6 = 18 кОм.
Определим напряжение смещения на базе транзистора
ЕБ = ЕЭ +0.7 = 2 + 0.7 = 2.7 В.
Найдем значения сопротивлений R1 и R2
R1 = ЕБ / IДЕЛ = 2.7 / 500 ∙ 10-6 = 5.4 кОм,
R2 = RДЕЛ – R2 = 18 – 5.4 = 12.6 кОм.
Выбираем стандартные значения сопротивлений R1 и R2:
R1 = 5.6 кОм, R2= 12 кОм.
-
Расчёт по переменному току.
Определяем крутизну транзистора:
где - высокочастотное сопротивление базы,
- сопротивление эмиттерного перехода.
= τК / СК = 500 ∙ 10-12 / 7 ∙ 10-12 = 71.43 Ом,
где τК – постоянная времени цепи обратной связи, СК – ёмкость коллекторного перехода
S = 100 / ( 71.43 + 100 ∙ 5.2) = 169 мА/В.
Зададим коэффициент регенерации GP = (3…7) = 5 и определим управляющее сопротивление
RУ = GP / S = 5 / 169 ∙ 10-3 = 29.6 Ом.
Зададим коэффициент обратной связи автогенератора К’ОС = С3 / С2 = 1 и вычислим реактивное сопротивление емкости С3
где rкв - сопротивление кварцевого резонатора, которое находится по формуле
rкв = 1 / ω ∙ Ck ∙ Qk = 1 / 2 ∙ π ∙ 3.125 ∙ 106 ∙ 1 ∙ 10-15 ∙ 2 ∙ 106 = 25.5 Ом.
Ck - емкость кварцевого резонатора, Qk – додротность кварцевого резонатора.
Найдем емкость конденсаторов С2 и С3
С2 = С3 = 1 / ωкв ∙ X3 = 1 / 2 ∙ π ∙ 3.125 ∙ 106 ∙ 27.5 = 1.85 нФ.
Стандартное значение: С2 = С3 = 2 нФ.
Вычислим ёмкость блокировочного конденсатора
С1 = (10…20) = 20 / 2 ∙ π ∙ 3.125 ∙ 106 ∙ 5.2 = 196 нФ,
стандартное значение С1 = 220 нФ.
Рассчитаем индуктивность блокировочного дросселя
Lk = (20…30) = 20 ∙ 27.5 / 2 ∙ π ∙ 3.125 ∙ 106 = 28 мкГн.
Определим необходимость дросселя LБ из условия
R1 ∙ R2 / (R1 + R2 ) ≥ (20…30) ∙ X2,
если оно не выполняется, то дроссель необходим.
Проверка
5.6 ∙ 103 ∙ 12 ∙ 103 ≥ 25 ∙ 27.5
67200 ≥ 687.5
Условие выполняется, следовательно, дроссель не нужен.
-
Энергетический расчёт автогенератора.
Определим коэффициент Берга γ1 = 1 / Gp и через него коэффициенты α0 и α1.
γ1 = 1 / Gp = 1 / 5 = 0.2; θ = 60˚;
γ0 = 0.11; α0 = 0.21; α1= 0.4.
Вычисляем амплитуду импульса коллекторного тока
Imk = Ik0 / α0(θ) = 5 ∙ 10-3 / 0.21 = 23.8 mA.
Проверяем условие Imk < Imk доп, 23.8 mA < 100 mA.
Определяем амплитуду первой гармоники коллекторного тока
Ik1 =α1(θ) ∙ Imk = 0.4 ∙ 23.8 ∙ 10-3 = 9.5 mA.
Рассчитываем амплитуду напряжения на базе транзистора
UmБ = Ik1 ∙ Ry = 9.5 ∙ 10-3 ∙ 29.6 = 0.282 B.
Вычисляем модуль коэффициента обратной связи
Находим амплитуду напряжения на коллекторе
Umk = = 0.282 / 0.73 = 0.386 B.
Определяем мощность, потребляемую от источника коллекторной цепью
P0 = Ik0 ∙ EКЭ = 5 ∙ 10-3 ∙ 7 = 35 мВт;
мощность, рассеиваемая кварцевым резонатором
Pкв = 0.5 ∙ ( UmБ / X2 ) 2 ∙ rкв = 0.5 ∙ ( 0.282 / 27.5 ) 2 ∙ 25.5 = 1.34 мВт;
Проверяем условие Pкв < Pкв доп, где Pкв доп - допустимая мощность рассеиваемая на кварцевом резонаторе, 1.34 мВт < 100 мВт.
мощность, рассеиваемая транзистором
Pk = P0 – Pкв = 35 – 1,34 = 33.66 мВт;
Проверяем условие Pк < Pк доп, где Pк доп – допустимая мощность рассеиваемая транзистором, 33.66 мВт < 150 мВт.
Оценим величину допустимого сопротивления нагрузки
R н доп ≥ 5 ∙ U2mk / Pкв = 5 ∙ 0.3862 / 1.34 ∙ 10-3 = 556 Ом.
Из условия, что будет потребляться мощность
Pн = 0.1 ∙ Pкв = 0.1 ∙ 1.34 = 0.134 мВт
найдем к.п.д. автогенератора
η =Pн / P0 = ( 0.134 / 35 ) ∙ 100% = 0.14 %.
3. РАСЧЕТ УСИЛИТЕЛЯ МОЩНОСТИ.
Требования к усилителю мощности:
рабочая частота – 25 МГц;
выходная мощность – не менее 25 Вт.
В качестве активного элемента в усилителе мощности будет использоваться биполярный транзистор КТ927Б т. к. он обеспечивает требуемую выходную мощность и может работать на требуемой частоте. Параметры транзистора приведены в ПРИЛОЖЕНИИ 2.
-
Схема усилителя мощности.
Схема усилителя мощности приведена на рисунке 5.
Рис.5.
Назначение элементов схемы усилителя мощности:
R1 и R2 - используются как делитель напряжения для обеспечения фиксированного смещения; обеспечивают автосмещение; корректируют частотную характеристику;
С1 и С5 – разделительные емкости;
L2 – блокировочная индуктивность;
С3 – блокировочная емкость;
L1 и С2 – входная согласующая цепь;
L3 и С3 – выходная согласующая цепь.
-
Расчет режима работы и энергетический расчет
Выбираем амплитуду импульсов коллекторного тока ik max из условия:
ik max ≤ (0.8 … 0.9) ∙ ik доп,
где ik доп – допустимая амплитуда импульсов коллекторного тока (справ.);
ik max = 0.8 ∙ 10 = 8 А.
Выбираем напряжение источника питания из условия:
Еп ≤ Uк доп /2,
где Uк доп – допустимая амплитуда напряжения на коллекторе (справ.);
Еп ≤ 70 / 2 = 35, выбираем Еп = 20 В.
Рассчитываем напряженность граничного режима работы активного элемента ξгр
ξгр = 1- iк max / Sгр∙ Еп = 1- 8 / 5 ∙ 20 = 0.92,
где Sгр – крутизна граничного режима (справ.).
Найдем амплитуду импульсов первой гармоники коллекторного напряжения
Uk1 = ξгр ∙ Еп = 0.92 ∙ 20 = 18.4 В.
Определим амплитуду импульсов первой гармоники коллекторного тока
Ik1 = α1(θ)∙ ik max = 0.5 ∙ 8 = 4 А,
где α1(θ) – коэффициент Берга, θ = 90˚.
Рассчитаем постоянный ток, потребляемый коллекторной цепью транзистора
Ik0 = α0(θ)∙ ik max = 0.318 ∙ 8 = 2.54 А,
где α0(θ) – коэффициент Берга, θ = 90˚.
Найдем мощность первой гармоники
P1 = Ik1 ∙ Uk1 / 2 = 4 ∙ 18.4 / 2 = 36.8 Вт.
Определим мощность, потребляемую от источника питания
P0 = Ik0 ∙ Eп = 2.54 ∙ 20 = 50.8 Вт.
Рассчитаем мощность, рассеиваемую на активном элементе
Pрас = Р0 – Р1 = 50.8 – 36.8 = 14 Вт.
Найдем к.п.д. усилителя
η = Р1 / Р0 = 36.8 / 50.8 = 0.72, т.е 72%.
Определим амплитуду управляющего заряда
Qy1 = ik max / [ωгр ∙ ( 1- cos θ )]= 8 / [2 ∙ π ∙ 100 ∙ 106 ∙ ( 1- cos 90˚ )] = 12.73 ∙ 10-9 Кл,
где ωгр – граничная частота работы транзистора, θ – угол осечки коллекторного тока.
Найдем постоянную составляющую напряжения эмиттерного перехода
Uэп = uотс – γ0 (π –θ) ∙ Qy1 /Cэ = 1 – 0.5 ∙ 12.73 ∙ 10-9 / 2300 ∙ 10-12 = -0.76 В,
где uотс – напряжение отсечки, γ0 - коэффициент Берга, Cэ – емкость эмиттерного перехода (справ.).
Определим минимальное мгновенное напряжение на эмиттерном переходе
uэ min = uотс – (1 – cos (π –θ) ) ∙ Qy1 / Cэ = 1 – 12.73 ∙ 10-9 / 2300 ∙ 10-12 = - 4.5 В.
Рассчитаем выходное сопротивление транзистора
Rk = Uk1 / Ik1 = 18.4 / 4 = 4.6 Ом.
Определим коэффициент, показывающий во сколько раз увеличивается входная емкость транзистора счет паразитной емкости коллекторного перехода
æ = 1 + γ1 (θ) ∙ ωгр∙ Ск ∙Rk = 1 + 0.5 ∙2 ∙ π ∙ 100 ∙ 106 ∙ 150 ∙ 10-12 ∙ 4.6 = 1.217,
где Ск – емкость коллекторного перехода.
Найдем амплитуду первой гармоники тока базы с учетом тока через емкость Ск
Iб = ω ∙ Qy1 ∙ æ = 2 ∙ π ∙ 25 ∙ 106 ∙ 12.73 ∙ 10-9 ∙ 1.217 = 2.43 A.
Рассчитаем сопротивление корректирующего резистора, подключаемого параллельно входу транзистора, служащего для симметрирования импульсов коллекторного тока
RЗ = 1 / ωβ ∙ Cэ = 1 / 2 ∙ π ∙ 5 ∙ 106 ∙ 2300 ∙ 10-12 = 13.8 Ом,