135498 (722144), страница 2
Текст из файла (страница 2)
Рис. 1.2 .Анализ кодовой комбинации
2.ИНТЕРФЕЙС.СТАНДАРТ RS-232-E
В 1969 году група промышленных корпораций США на основании рекомендаций EIA разработала вариант С своего стандарта RS-232. Модификация D этого стандарта введена в 1987 году и, наконец, в 1991-м была выпущена последняя модификация 232-Е которая используется и поныне. Существует аналог данного стандарта - это партоколы МККТТ V.24 и V.28.
Стандарт предназначен для регламентирования связи между оконечным оборудованием связи ( ООД )( терминал ) и оконечным оборудованием линии ( ООЛ )( модем ) при обмене двоичной информацией в последовательной форме.
перегрузки; Места соединения оборудования называются цепями стыка. Существует 4 разновидности стыков :
С1 - канальный, находится на выходе передатчика и на входе приемника, регламентирует входное и выходное сопротивлние, регулирует уровень сигнала и устанавливает его допустимое значение;
С2 - преобразования, находится между ООД и ООЛ и представляет собой 25- или 26-проводную шину в которой ООД использует розеточную, а ООЛ - вилочную часть разъема, служит для обмена данными и синхронизации ООД и ООЛ;
С3 - защитный, между ООЛ и устройством защиты от
С4 - мультиплексирования, между ООЛ и мультиплексным коммутатором.
Стандарт МККТТ V.24 содержит функциональные определения сигналов интерфейса, а V.28 - электрические характеристики интерфейса.
С1 С2
Канал связи
ООД
УПС
С3
ООД
УПС
УЗО
Канал связи
УПС
МДП
УЗО
Канал связи
ПК
С4
УПС
Рис .2. Цепи стыка
Интерфейс RS-232 основан на биполярной логике. Первое сстояние "метка" реализуется при действии на линии напряжения -3 - -15 В, а второе +3 - +15 В. Интервал -3 - +3 В - переходная зона неопределенности. Приемник и передатчик без повреждений выдерживают диапазон +25 - -25 В.
2.1.Сигналы интерфейса. Назначение
Все сигналы делятся на 4 группы : данные ( представляют собой последовательность импульсов,с частотой равной скорости передачи ) , управления ( два уровня : сигнальный и нулевой ), синхронизация
( последовательность коротких импульсов с частотой передачи ) и земля.
-
Земля ( AB-102 ) - общий провод для всех электрических цепей,присоединяется к корпусу;
-
Передаваемые данные ( BA-103 ) - информационные сигналы,вырабатываемые локальным ООД для передачи локальному ООЛ;
-
Принимаемые данные ( BB-104 ) - информационные сигналы, вырабатываемые локальным ООЛ для передачилокальному ООД;
-
Запрос передатчика ( CA-105 ) - вырабатывается ООД, обеспечиваетвактивном состоянии удержание ООЛ в режиме передачи;
-
Сброс передатчика ( CB-106 ) - вырабатывается ООЛ, запрашивает
о готовности ООЛ устройства принимать данныеот ООД;
-
Готовность ООД ( CD-108 ) - вырабатывается ООД, готовит ООЛ
соединению с каналом связи;
-
Готовность ООЛ ( CC-107 ) - вырабатывается ООЛ, сигнал
готовности ООЛ к работе с ООД;
-
Указатель вызовов ( CE-125 ) - ООЛ сообщает о приеме сигналов
вызова по каналу;
-
Указатель сигнала по линии приема ( CF-109 ) - ООЛ указывает о
возможности установления подходящей связи;
-
Указатель качества связи ( CG-110 ) - использовать нерекомендуется;
-
ООД переключения скорости передачи ( CH-111 ) - сигнализирует
ООД об одной из 2-х возможных скоростей передачи для ООЛ;
-
ООЛ переключения скоростей передачи ( CI-112 ) - выбор ООЛ
одной из скоростей передачи;
-
Готовность к приему данных ( CJ-133 ) - 00Д активизирует сигнал
сообщения ООЛ о готовности к приему данных;
-
Петлевая конфигурация локальной ООЛ ( LL-141 ) – ООД переводит ООЛ в режим петлевого тестирования;
-
Петлевая конфигурация удаленной ООЛ ( RL-140 ) – ООД переводит удаленную ООЛ в режим дистанционного тестирования;
-
Режим тестирования ( TH-142 ) - ООЛ сообщает ООД о переходе в режим тестирования;
-
ООД - синхронизация передатчика ( DA-113 ) – ООД вырабатывает сигналы для обеспечения синхронизации ООЛ при передаче;
-
ООЛ - синхронизация передатчика ( DB-114 ) – ООЛ обеспечивает синхронизацию ООД при передаче;
-
ООЛ - синхронизация приемника ( DD-115 ) - ООЛ обеспечивает синхронизацию ООД при приеме;
-
Передаваемые данные (дополнительный канал ) ( SBA-116 ) – ООД посылает данные к ООЛ для передачи по дополнительному каналу;
-
Принимаемые данные ( SBB-119 ) - ООЛ передает данные для ООД по дополнительному каналу;
-
Запрос передатчика ( SCA-120 ) - ООД устанавливает ООЛ в режим пердачи по дополнительному каналу;
-
Сброс передатчика ( SCB-121 ) - ООЛ подтверждает возможность работы с дополнительным каналом;
-
Указатель сигнала на линии приема ( SCF-122 ) – ООЛ информирует ООД о приеме несщей ( сигнала ), по дополнительному каналу.
2.2.Полудуплексный режим
В полудуплексном режиме АПД попеременно работает на передачу и на прием .Изменение направления передачи осуществляется тем ООД, которое распознает конец принятого сообщения. Конец может быть выявлен по принятой последовательности битов (после чего ООД на передающей стороне переводит цепь 105 в состояние «выключено» и в АПД выключается передатчик) или по снижению уровня приема ниже установленного минимального значения. В обоих случаях ООД на приемной стороне должно ожидать перехода цепи 109 в состояние «выключено». Такой переход происходит после упомянутого снижения уровня приема не сразу ,а лишь через определенное время последействия (tпосл на рис.),превышающее длительность перерывов , которые возможны в канале связи . только когда зафиксировано состояние «выключено» цепи 109,ООД оконечной установки , работавшей ранее на прием ,переключается на передачу ,переводя цепь 105 в состояние «включено». Передача данных начинается после того ,как АПД посредством перевода цепи 106 в состояние «включено» откроет соединительный тракт. До тех пор ,пока цепь 105 находится в состоянии «включено»,цепь приема данных 104 работающей на передачу установки для защиты от ложных изменений состояния должна находиться в состоянии «1». Установка 1 – передающая Установка 1 - приемная
Установка 2 – приемная Установка 2 - передающая
Вкл Цепь№
Выкл 105
Вкл
Выкл tз 106
Вкл 109
Выкл tсраб
0 103
1
0 104
1 Время
Вкл 105
Выкл
Вкл 106
Выкл tз
Вкл tсраб tпосл 109
Выкл
0 103
1
0 104
1
Рис. 3. Последовательности сигналов на стыке между АПД и ООД при работе в полудуплексном режиме и изменении направления передачи: tс раб – время срабатывания цепи 109; tпосл – время последействия цепи 109;tз- время задержки между переходами в состояние «включено» цепей 105 и 106
По окончании переданного сообщения ООД переводит цепь 105 в состояние «выключено». С появлением состояния «выключено»цепи 106 АПД прекращает дальнейшую передачу данных . работавшая ранее на передачу АЛД не сразу готова к приему : вначале может оказаться необходимым сохранение в течение некоторого времени в ее передатчике блокировки цепи 104 для защиты от ошибок, вызванных эхом в линии связи . затем в течение времени задержки ,предусмотренного для цепи 109 , определяется очередное значение уровня приема ; в синхронном режиме , кроме того ,синхронизируется АПД, а при наличии в системе адаптивного корректора производится его настройка.
3.Системы синхронизации
Синхронизация есть процесс установления и поддержания синхронного состояния между двумя и более процессами (т.е. соответствующие события в них должны происходить одновременно). Различают три вида синхронизации поэлементную, групповую и цикловую. В соответствии с Госстандартом поэлементная, групповая и цикловая синхронизация – это синхронизация переданного и принятого цифровых сигналов данных, при которой устанавливаются и поддерживаются требуемые фазовые соотношения между значащими моментами переданных и принятых соответственно единичных элементов сигналов, групп единичных элементов этих сигналов и циклов их временного объединения. Поэлементная синхронизация –это установление соответствия между значащими моментами единичных элементов на передаче и на приёме. Групповая синхронизация обеспечивает правильное разделение принятой последовательности на кодовые комбинации, а цикловая синхронизация – правильное разделение циклов временного объединения элементов на приёме.
3.1.Методы и устройства поэлементной синхронизации
К устройствам поэлементной синхронизации предъявляются следующие требования:
1. Высокая точность синхронизации. Допустимое относительное отклонение синхроимпульсов от моментов, соответствующих идеальной синхронизации, eдоп = ± 3%.
2. Малое время вхождения в синхронизм, как при первоначальном включении, так и после прерывания связи.
3. Сохранение синхронизма при наличии помех и кратковременных прерываний связи.
4. Независимость точности синхронизации от статической структуры передаваемого сообщения.
Классификация методов поэлементной синхронизации
Поэлементная синхронизация может быть обеспечена за счёт использования автономного источника – хранителя эталона времени и методов вынужденной синхронизации. Первый способ применяется в тех случаях, когда длительность связи, включая время вхождения в связь, не превышает время сохранения синхронизации. В качестве автономного источника можно использовать местный генератор с высокой стабильностью.
Методы вынужденной синхронизации могут быть основаны на использовании отдельного канала (по которому передаются импульсы, необходимые для подстройки местного генератора) или рабочей (информационной) последовательности. Использование первого метода снижает пропускную способность рабочего канала за счёт выделения дополнительного синхроканала. Поэтому на практике чаще всего используется второй метод.
Вкл Цепь№
Выкл 105
Выкл tз 106
Вкл 109
0 103
1 Время
Выкл
Вкл tсраб tпосл 109















