125973 (717685), страница 5

Файл №717685 125973 (История часов и часы в истории) 5 страница125973 (717685) страница 52016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Во-первых; арабы были весьма искусны в изготовлении водяных часов, и часы Герберта тоже могли быть водяными. Ведь содержащийся в документах термин «хорология» (horologium) относился тогда ко всяким рода приборам для измерения времени. Во-вторых, в дальнейшем не было упоминаний о достижении Герберта или о том, что его идею кто-либо развивал при его жизни или после нее. Кстати, именно Герберт ввел в Европе «арабские» цифры.

Большинство историков видят преемственность: ведь и в самом деле механические часы стали результатом усложнения механической части водяных, в которых применялись уже циферблат, колесная передача, механизм боя, марионетки, разыгрывающие различные сцены… Разница была в движущей силе: в одном случае – струя воды, в другом – тяжелая гиря. Недоставало только механического спускового устройства и регулятора хода. Автор шпиндельного спуска («сторожка»), который через определенные промежутки времени прерывает движение часового механизма, неизвестен.

Обычно историки ссылаются на механизм, чертеж которого приведен в альбоме французского архитектора Вилларда де Синекура, как на первое упоминание спускового устройства для регулирования хода часов: он описал (приблизительно в 1250 г.) грубое устройство, позволявшее фигурке ангела всегда показывать рукой на Солнце. Этот механизм, как полагают многие, не был изобретен Виллардом; скорее всего, он познакомился с ним и срисовал его во время своих путешествий. К тому же нарисованный в альбоме Вилларда механизм все-таки мало напоминает шпиндельный спуск.
Как видно из эскиза этого устройства, здесь в качестве движущей силы применена гиря, подвешенная на конце веревки, обмотанной вокруг оси колеса. Падение гири и относительно равномерное вращение вертикального стержня, на котором на подставке укреплена фигура ангела, регулировалось колебанием колеса взад и вперед. Период колебания обусловливался многими факторами, включая момент инерции, трение в опорах, силы, действующие на веревку.

Известны старинные французские и английские башенные часы простого устройства с боем, но без циферблата. Английское слово clock – часы, происходит от латинского clocca; другим его эквивалентом является саксонское clugge французское cloche и древнегерманское (тевтонское) glocke, но первоначально все эти слова обозначали не часы, а колокол.

Производство железных башенных часов начинается с английских Вестминстерских часов 1288 г. Следующее сообщение от 1292 г. говорит о часах храма в Кентербери. Далее есть сообщения о часах, построенных в 1300 г. во Флоренции, на 14 лет позднее – в Каннах, в 40-х гг. XIV века – в Модене, Падуе, о бельгийских часах в Брюгге и об английских часах в Дувре. В 1352 г. были построены монументальные куранты в кафедральном соборе Страсбурга, четырьмя годами позже – башенные часы в Нюрнберге, в 1370 г. такие же в Париже, в 1381 – первые подобные в Базеле, и, наконец, в 1410 г. появились такие часы в Праге, ставшие основой позднейших пражских курантов.

Сохранились, конечно, и другие сообщения о строительстве часов, но они не вполне обоснованны. По одному из таких сообщений, башенные часы с боем изготовил Висконти в 1335 г. для костела Беата Вирджинни (ныне Сен-Готард) в Милане. По другим данным, Генри де Вик из Поррэна изготовил около 1370 г. башенные часы с боем для королевского дворца Карла V.

Результатом применения механических часов стал переход по всей Европе от церковных канонических часов, неравных по времени года, к равным часам нашей современной системы исчисления времени. Изменение было радикальным, а потому переход совершался постепенно, по мере распространения в городах башенных часов. Французский король Карл V первым сделал шаг к этой реформе. После установки дворцовых башенных часов де Вика он приказал всем церквям Парижа отбивать по ним часы и четверти часа. Так как на этих часах время отсчитывалось в равных промежутках, новый порядок исчисления времени распространился не только в Париже, но постепенно и в европейских странах.

Сутки сначала подразделяли на 24 часа, считая от одного заката солнца до другого. Окончание дня отмечалось 24 ударами колокола, и такой порядок счета времени в некоторых местах сохранялся до 1370 г. Затем начался постепенный переход к подразделению суток на две равные половины, каждая по 12 часов, с отсчетом от полуночи до полудня и обратно – от полудня до полуночи. Теперь не стало надобности отбивать время 24 раза – хватало 12 раз. Переход на этот, более рациональный, счет времени происходил в различных странах Западной Европы не одновременно; счет времени от 1 до 24 часов, начиная с часа восхода Солнца, дольше всего сохранялся в Италии и в некоторых городах Германии.

Часы одинаковой продолжительности называли «городским временем». Однако и при новом счете часы продолжали соразмерять и контролировать по солнечному времени, это делали до появления маятниковых часов. Помимо унификации длительности часа, вторым и долгосрочным результатом изобретения часов стал прогресс в механике. Очевидно, например, что зубчатые колеса широко распространились в технике во многом благодаря изобретению часов.

Самым старым документом о механических часах, содержащим описание и чертеж и опубликованном в 11 различных рукописях (одна по крайней мере исходит непосредственно от автора часов), является, по всей видимости, сообщение об «астрарии» – астрономических часах, которые после 16 лет труда закончил в 1364 г. профессор астрономии и медицины Джиованни де Донди для Палаццо дель Капитане в Падуе. Эти часы показывали движение Солнца, Луны и пяти планет, содержали в себе вечный календарь и давали возможность определять звездное и среднее солнечное время; они были известны далеко за пределами Италии, доставили де Донди большую славу при жизни и обессмертили его имя.

В 1529 г. эти знаменитые часы испортились и остановились. После долгих поисков нашли часовщика, который сумел их восстановить, – это был Джуанелло Турриано (1500–1585). Современники провозгласили его гением, ведь он и сам сумел создать астрономические часы сложнейшей конструкции. Для их устройства потребовалось 1800 колес, с помощью которых воспроизводилось 30-дневное движение Сатурна, часы дня, годичное движение Солнца, движение Луны, а также всех планет в их «обычном движении» соответственно птолемеевой системе мироздания. По свидетельству современника, Джуанелло потратил 20 лет только на предварительную разработку проекта своих часов. Он же известен как строитель водопровода, который считался одним из величайших технических чудес XVI века.

  1. Электрические часы

В самом конце XVIII в. были предприняты попытки использовать возможность передачи статического электричества на расстояние. Однако полученные результаты имели весьма малую практическую ценность, пока в 1800 г. Алессандро Вольта не изобрел элемент, получивший название Вольтова столба.

Самое раннее известие о создании электрических часов относится к 1830 г., когда профессор физики Веронского университета (Италия) Замбони создал часы, подробности устройства которых, к сожалению, не дошли до нас. Сохранились лишь сведения, что колебательное движение маятника часов поддержизалось при помощи последовательных электростатических притяжений и отталкиваний металлической линзы маятника между гвумя полюсами элемента Замбони, обладающего большей эдс по сравнению с элементом Вольта. По свидетельству профессора де-ла-Рива, часы Замбони были выставлены в 1832 г. в промышленном отделе Societe des Arts в Женеве.

В результате открытия Эрстеда в 1820 г., работ Ампера и других ученых было создано учение об электромагнетизме. Первым практическим результатом применения электромагнетизма было изобретение электромагнитного телеграфа и электрических часов.

Инициаторами создания электрических часов на основе использования Электромагнетизма были изобретатели электротелеграфа Штейнгель (1801–1870) и Уитстон (1802–1875). Работа над электромагнитным телеграфом привела К.А. Штейнгеля к созданию в 1839 г. Электрических часов. Уитстон в 1840 г. Сделал в Королевском обществе доклад об электрических часах. Их конструкция, приведенная в этом докладе, имеет лишь исторический интерес.

Рис. Электрические часы Уитстона

В первых электрических часах Уитстона (рис. 230) устройство передачи импульса вторичным часам (коммутатор) представляло собой катушку, качающуюся вдоль двух симметрично расположенных магнитных сердечников. Катушка, выполнявшая роль маятника, передавала импульс тока вторичным часам ежесекундно. Однако при этом ход часов нарушался, так как давление в момент контакта было значительным. Уитстон пытался преодолеть этот недостаток путем устройства цепи с электромагнитной связью.

В другом варианте его электрочасов маятник приводился в действие от завода ключом. Отличие этих часов от обыкновенных заключалось в том, что здесь маятник использовался еще в качестве электромагнитного генератора. В маятник вместо линзы был вставлен намагниченный цилиндрический стальной стержень. При передвижении стержня в магнитном поле в легких стальных дисках циферблата вторичных часов возбуждался ток. Вращение этих дисков вызывало вращение стрелок. Стальными дисками циферблата электрические импульсы посылались ежесекундно.

Таким образом, маятник выступал в роли генератора соответствующей частоты, а вторичные часы были как бы двигателем, приводимым в действие током. Маятник выполнял не свойственные ему функции, что создавало крайне неблагоприятные условия для его работы. Маятник, раскачивающийся в магнитном поле, испытывал сопротивление своему колебанию, и в нем не всегда получались достаточной силы электрические импульсы, чтобы управлять трелками часов. Эта система позволяла преодолеть трудности осуществления контакта, но чрезмерно нарушался свободный ход маятника.

Прав Хоуп-Джонс, давший отрицательную характеристику часам Уитстона. «Мы не сомневаемся в том, – пишет этот автор, – что Уитстон изучал Галилея, Гюйгенса, что он был знаком с теорией маятника, с достижениями Томпиона, Гаррисона, Мюджа и Арнольда, которые жили и работали до него, в веке, предшествовавшем его веку. Но такого безжалостного вмешательства в свободу маятника было бы достаточно для того, чтобы они перевернулись в своих гробах».

Часы Уитстона были установлены в Королевском обществе в 1873 г., но ими перестали пользоваться уже вскоре после смерти изобретателя.

После Уитстона нерациональное использование маятника в электрических часах продолжалось в течение довольно долгого времени. Маятник рассматривался только как источник энергии, необходимой для замыкания цепи, и когда какой-либо изобретатель пытался осуществить лучшее контактное устройство, он использовал в этих целях маятник, хотя это было связано с нарушением элементарных законов его колебаний. Немалую роль в этих неудачах играло то, что многие изобретатели электрочасов на раннем этапе их развития не обладали достаточными знаниями в часовом деле. Первые значительные успехи в создании электрических часов были достигнуты тогда, когда за это дело взялись часовщики, знакомые с электротехникой, такие, как Александр Бен, Матиас Гипп и др.

Процесс развития электрохронометрии в XIX в. был весьма медленным и малообнадеживающим. Даже в начале XX в. Имелось немало специалистов, связанных с часовым делом, которые не верили в возможность дальнейшего прогресса электрохронометрии.

Лорд Гримторп писал, что у него нет «никаких оснований допускать, что можно прямо электричеством поддерживать точный ход часов в течение длительного времени».

В новом издании своей книги Гримторп указывает причину, вследствие которой электрические часы не обеспечивают необходимую точность: «Всякий, кто приступает к конструированию электрических часов, должен иметь в виду, что время от времени

происходят изменения в напряжении тока, поступающего от источника тока. А это сказывается на точности хода часов».

Все эти затруднения были преодолены в ходе дальнейшего развития электрохронометрии.

  1. Кварцевые часы

Точность астрономических часов Шорта была превзойдена кварцевыми часами, условия для появления которых были подготовлены развитием радиотехники и электроники.

История применения пьезоэлектрического кристалла кварца. Изучение физико-технических свойств кварца и их использование в технике (в частности, в области хронометрии) имеют свою небольшую, но интересную и во многом поучительную историю. Изучение свойств кварца привело к открытию пьезоэлектрического эффекта, который заключается в появлении на поверхности кристалла кварца при его сжатии или растяжении одинаковых по величине, но разноименных электрических зарядов. Этот эффект впервые обнаружили и изучили в 1880 г. братья П. и Ж. Кюри на кристаллах турмалина и кварца; он получил название прямого пьезоэлектрического эффекта. В 1881 г. немецкий ученый Липпман, ознакомившись с работами Кюри, предположил существование обратного пьезоэлектрического эффекта, или механической деформации кристалла кварца, пропорциональной напряженности электрического поля. В том же году братья Кюри экспериментально подтвердили существование такого эффекта. В настоящее время он используется в системе кварцевых часов.

Первая серьезная попытка использовать пьезоэлектрический эффект в электрической цепи была сделана в 1917 г. А.М. Никольсоном. Он применил сегмент сегнетовой соли (пьезоэлектрик), чтобы создать устройство для превращения электрической энергии в звук и обратно. На этой основе он создал громкоговоритель и микрофон. Никольсон был одним из первых, кто сумел использовать пьезоэлектрические свойства кварца для контроля частоты. В 1918 г. французский физик П. Ланжевен применил пьезоэлектрический эффект кварца для подводной сигнализации при помощи ультразвуковых колебаний.

Исследовательские работы по использованию пьезоэффекта кварца в технике в качестве эталона частоты и времени были начаты в 1921 г. американским ученым Кеди, однако лишь в 1927–1930 гг. В.А. Маррисону – сотруднику телефонной лаборатории Белла (США) – первому удалось применить высокочастотные колебания кварца для создания часов. С этой целью был вырезан кусок кварца в форме кольца из кристалла таким образом, чтобы изменения частоты его колебаний с изменением температуры были возможно малы. Кристаллическое кольцо было установлено в камере с управляемой температурой, ее колебания допускались только в пределах 0,01° С. В камере, где помещался кварц, атмосферное давление поддерживали на постоянном уровне. Камера находилась под герметическим колпаком. Колеба-ния кристалла были отрегулированы на частоту 100 кГц.

Характеристики

Тип файла
Документ
Размер
9,17 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6552
Авторов
на СтудИзбе
299
Средний доход
с одного платного файла
Обучение Подробнее