124482 (717371), страница 2
Текст из файла (страница 2)
1.2.1 Технологические признаки
По технологическому назначению различают печи нагревательные и реакционно-нагревательные.
В первом случае целью является нагрев сырья до заданной температуры. Это большая группа печей, применяемых в качестве нагревателей сырья, характеризуется высокой производительностью и умеренными температурами нагрева (300-500°С) углеводородных сред (установки АТ, АВТ, ГФУ).
Во втором случае кроме нагрева в определенных участках трубного змеевика обеспечиваются условия для протекания направленной реакции. Эта группа печей многих нефтехимических производств одновременно с нагревом и перегревом сырья используется в качестве реакторов. Их рабочие условия отличаются параметрами высокотемпературного процесса деструкции углеводородного сырья и невысокой массовой скоростью (установки пиролиза, конверсии углеводородных газов и др.).
1.2.2 Теплотехнические признаки
По способу передачи тепла нагреваемому продукту печи подразделяются:
– на конвективные;
– радиационные;
– радиационно-конвективные.
Конвективные печи – это один из старейших типов печей. Они являются как бы переходными от нефтеперегонных установок к печам радиационно-конвективного типа. Практически в настоящее время эти печи не применяются, так как по сравнению с печами радиационными или радиационно-конвективными они требуют больше затрат как на их строительство, так и во время эксплуатации. Исключение составляют только специальные случаи, когда необходимо нагревать чувствительные к температуре вещества сравнительно холодными дымовыми газами.
Печь состоит из двух основных частей – камеры сгорания и трубчатого пространства, которые отделены друг от друга стеной, так что трубы не подвергаются прямому воздействию пламени, и большая часть тепла передается нагреваемому веществу путем конвекции. Чтобы предотвратить прожог первых рядов труб, куда поступают сильно нагретые дымовые газы из камеры сгорания, и чтобы коэффициент теплоотдачи удерживался в пределах, приемлемых по технико-экономическим соображениям, при сжигании используется значительный избыток воздуха или 1,5-4-кратная рециркуляция остывших дымовых газов, отводимых из трубчатого пространства и нагнетаемых воздуходувкой снова в камеру сгорания. Одна из конструкций конвективной печи показана на рисунке 1.3.
Дымовые газы проходят через трубчатое пространство сверху вниз. По мере падения температуры газов соответственно равномерно уменьшается поперечное сечение трубчатого пространства, при этом сохраняется постоянная объемная скорость продуктов сгорания.
Рисунок 1.3 – Конвективная печь
1 – горелки; 2 – камера сгорания; 3 – канал для отвода дымовых газов; 4 – камера конвекции
В радиационной печи все трубы, через которые проходит нагреваемое вещество, помещены на стенах камеры сгорания. Поэтому у радиационных печей камера сгорания значительно больше, чем у конвективных. Все трубы подвергаются прямому воздействию газообразной среды, которая имеет высокую температуру. Этим достигается:
а) уменьшение общей площади теплоотдачи печи, так как количество тепла, отданного единице площади труб, путем радиации при одинаковой температуре среды (особенно при высоких температурах этой среды), значительно больше, чем количество тепла, которое можно передать путем конвекции;
б) хорошая сохранность футеровки за трубчатыми змеевиками, благодаря тому, что снижается ее температура, во-первых, за счет прямого закрытия части ее трубами, во-вторых, за счет отдачи тепла излучением футеровкой более холодным трубам.
Обычно нецелесообразно закрывать все стены и свод трубами, так как этим ограничивается теплоизлучение открытых поверхностей, а в результате уменьшается общее количество тепла, отдаваемого единицей площади труб.
Например, у современных типов кубовых печей отношение эффективной открытой поверхности к общей внутренней поверхности печи колеблется в пределах 0,2-0,5.
Чисто радиационные печи из-за простоты конструкции и большой тепловой нагрузки труб имеют самые низкие капитальные затраты на единицу переданного тепла. Однако они не дают возможности использовать тепло продуктов сгорания, как это имеет место у радиационно-конвективньгх печей. Поэтому радиационные печи работают с меньшей тепловой эффективностью.
Радиационные печи применяются при нагреве веществ до низких температур (приблизительно до 300 °С), при небольшом их количестве, при необходимости использования малоценных дешевых топлив и в тех случаях, когда особое значение придается низким затратам на сооружение печи.
Радиационно-конвективная печь имеет две отделенные друг от друга секции: радиационную и конвективную. Большая часть используемого тепла передается в радиационной секции (обычно 60-80 % всего использованного тепла), остальное – в конвективной секции.
Конвективная секция служит для использования физического тепла продуктов сгорания, выходящих из радиационной секции обычно с температурой 700-900°С, при экономически приемлемой температуре нагрева 350-500°С (соответственно температуре перегонки).
Величина конвективной секции, как правило, подбирается с таким расчетом, чтобы температура продуктов сгорания, выходящих в боров, была почти на 150°С выше, чем температура нагреваемых веществ при входе в печь. Поэтому тепловая нагрузка труб в конвективной секции меньше, чем в радиационной, что обусловлено низким коэффициентом теплоотдачи со стороны дымовых газов.
С внешней стороны иногда эти трубы снабжаются добавочной поверхностью – поперечными или продольными ребрами, шипами и т. п.
Почти все печи, эксплуатируемые в настоящее время на нефтеперерабатывающих заводах, являются радиационно-конвекционными. В печах такого типа трубные змеевики размещены и в конвекционной и в радиантной камерах.
1.2.3 Конструктивные признаки
По конструктивному оформлению трубчатые печи классифицируются:
-
по форме каркаса:
а. Коробчатые ширококамерные (рисунок 1.4а), узкокамерные
(рисунок 1.4б);
б. Цилиндрические (рисунок 1.4в);
в. Кольцевые;
г. Секционные;
-
по числу камер радиации:
а. Однокамерные;
б. Двухкамерные;
в. Многокамерные;
Рисунок 1.4 – Форма каркаса печи
а – коробчатой ширококамерной печи; б – коробчатой узкокамерной печи; в – цилиндрической печи
-
по числу камер радиации:
а. Однокамерные;
б. Двухкамерные;
в. Многокамерные;
-
по расположению трубного змеевика:
а. Горизонтальное (рисунок 1.5а);
б. Вертикальное (рисунок 1.5б);
Рисунок 1.5 – Расположение трубного змеевика
а – горизонтальное; б – вертикальное
-
по расположению горелок:
а. Боковое;
б. Подовое;
-
по топливной системе:
а. На жидком топливе (Ж);
б. На газообразном топливе (Г);
в. На жидком и газообразном топливе (Ж+Г);
-
по способу сжигания топлива:
а. Факельное;
б. Беспламенное сжигание;
-
по расположению дымовой трубы:
а. Вне трубчатой печи (рисунок 1.6а);
б. Над камерой конвекции (рисунок 1.6б);
-
по направлению движения дымовых газов:
а. С восходящим потоком газов;
б. С нисходящим потоком газов;
в. С горизонтальным потоком газов
Рисунок 1.6 – Расположение дымовой трубы
а – вне трубчатой печи; б – над камерой конвекции
2. ОСНОВНЫЕ ПОКАЗАТЕЛИ РАБОТЫ ПЕЧЕЙ
Каждая трубчатая печь характеризуется тремя основными показателями:
– производительностью;
– полезной тепловой нагрузкой;
– коэффициентом полезного действия.
Производительность печи выражается количеством сырья, нагреваемого в трубных змеевиках в единицу времени (обычно в т/сутки). Она определяет пропускную способность печи, т. е. количество нагреваемого сырья, которое прокачивается через змеевики при установленных параметрах работы (температуре сырья на входе в печь и на выходе из нее, свойствах сырья и т. д.). Таким образом, для каждой печи производительность является наиболее полной ее характеристикой.
Полезная тепловая нагрузка — это количество тепла, переданного в печи сырью (МВт, Гкал/ч). Она зависит от тепловой мощности и размеров печи. Тепловая нагрузка большинства эксплуатируемых печей 8-16 МВт. Перспективными являются более мощные печи с тепловой нагрузкой 40-100 МВт и более. Коэффициент полезного действия печи характеризует экономичность ее эксплуатации и выражается отношением количества полезно используемого тепла Qпол к общему количеству тепла Qобщ, которое выделяется при полном сгорании топлива. Полезно использованным считается тепло, воспринятое всеми нагреваемыми продуктами (потоками): сырьем, перегреваемым в печи паром и в некоторых случаях воздухом, нагреваемым в рекуператорах (воздухоподогревателях).
Значение коэффициента полезного действия зависит от полноты сгорания топлива, а также от потерь тепла через обмуровку печи и с уходящими в дымовую трубу газами. Трубчатые печи, эксплуатируемые в настоящее время на нефтеперерабатывающих заводах, имеют КПД в пределах 0,65-0,87. Повышение коэффициента полезного действия печи за счет более полного использования тепла дымовых газов возможно до значения, определяемого их минимальной температурой. Как правило, температура дымовых газов, покидающих конвекционную камеру, должна быть выше начальной температуры нагреваемого сырья не менее чем на 120-180°С.
Эксплуатационные свойства каждой печи наряду с перечисленными показателями характеризуются:
– теплонапряженностью поверхности нагрева;
– тепловым напряжением топочного объема;
– гидравлическим режимом в трубном змеевике при установившейся работе.
От комплекса этих показателей зависят эффективность работы трубчатых печей и срок их службы.
3. КОНСТРУКЦИИ И ЭСКИЗЫ ТРУБЧАТЫХ ПЕЧЕЙ
В промышленности применяется большое число различных конструкций и типоразмеров трубчатых печей. При выборе печи в основном следует учитывать вид топлива (газовое или комбинированное); требование технологического процесса к расположению труб камеры радиации (горизонтальное или вертикальное); необходимость дифференциального подвода тепла к трубам камеры радиации; количество регулируемых потоков; время пребывания продукта в печи или камере радиации.
Рассмотрим только печи основных типов, имеющих широкое распространение.
На действующих установках нефтегазопереработки широко распространены шатровые печи и печи беспламенного горения, которые в настоящее время отнесены к печам устаревшей конструкции.
Шатровые печи (рисунок 3.1), имеющие две камеры радиации с наклонным сводом и одну камеру конвекции, расположенную в центре печи, применяются на установках АВТ производительностью 1,5-3,0 млн. т/год.
Нагреваемое сырье поступает в конвекционную камеру и двумя потоками проходит через трубы. В печи имеются муфели, в которых размещаются форсунки. Горение топлива практически завершается в муфельном канале, и в топку поступают раскаленные продукты сгорания. Двухскатные печи шатрового типа имеют серьезные недостатки: они громоздки, металлоемки, КПД их не превышает 0,74, теплонапряженность камер низкая, дымовые газы покидают конвекционную камеру при сравнительно высокой температуре (450-500°С).
В 60-е годы на АВТ и других технологических установках начали широко применяться печи беспламенного горения с излучающими стенками (рисунок 3.2). Беспламенные панельные горелки 1 расположены пятью рядами в каждой фронтальной стене камеры радиации. Каждый горизонтальный ряд имеет индивидуальный газовый коллектор, что создает возможность независимого регулирования теплопроизводительности горелок одного ряда и теплопередачи к соответствующему участку радиантного экрана 2. Существует пять типов печей с излучающими стенками, тепловая мощность которых изменяется от 8,9 до 26,7 МВт.
Рисунок 3.1 – Схема двухкамерной печи с наклонным сводом