123487 (717199)

Файл №717199 123487 (Оптимизация моделей процессов производства)123487 (717199)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра менеджмента

РЕФЕРАТ

на тему:

«ОПТИМИЗАЦИЯ МОДЕЛЕЙ ПРОЦЕССОВ ПРОИЗВОДСТВА»

МИНСК, 2008

В условиях оживления и развития отечественной промышленности существенно возрастает интерес к проблемам организации производства, и в частности, к задачам оперативно-календарного планирования.

Календарные планы работы отдельных произ­водственных ячеек предприятия представляют собой расписания изготовления всех изделий, загрузки обо­рудования и рабочих мест. Производственная ячейка - часть производственного пространства (станки, уча­сток), на котором соответствующим образом органи­зованы производственные ресурсы и процессы.

Основными параметрами календарных графиков являются: приоритетность работ (очередность запуска изделий в обработку), размер партий запуска и время опережения начала обработки изделий на связанных рабочих местах, размер незавершенного производст­ва. Результатом составления оптимального календар­ного графика является определение наименьшей длительности производственного цикла, оказывающей существенное влияние на улучшение экономических результатов деятельности предприятия. В этом случае происходит снижение объема оборотных средств в незавершенном производстве, уменьшаются простои оборудования и рабочих.

В производственных подразделениях машино­строительных предприятий календарное планирова­ние в настоящее время основано главным образом на моделировании, позволяющем обеспечить пропор­циональность, непрерывность, устранить «узкие мес­та» и правильно установить приоритеты работ. Сле­дует отметить, что установление очередности запуска изделий в производство является одной из основных задач, которую необходимо решить при составлении оптимального календарного графика.

В силу этого, в качестве критерия оптимальности моделей целесообразно использовать минимизацию длительности совокупного производственного цикла. Под моделью производственного процесса по­нимается его пространственное построение, отра­жающее технолого-организационную суть последнего через организационную структуру. Под моделью пла­на производства - количественно-временная органи­зация предметов труда в ходе производственного процесса. Под моделью оперативного управления (части управляющей системы - надстройки) - функ­циональное выделение той части управляющей сис­темы, которая предназначена для удержания сущест­вующих переменных управляемого объекта в задан­ных планом пороговых значениях.

Все существующие методы решения задач ка­лендарного планирования по степени достижения экстремального результата подразделяются на две четко выраженные подгруппы - точных и прибли­женных решений.

К числу опробованных точных методов решения задачи моделирования относятся методы линейного и динамического программирования, комбинаторные методы дискретного программирования и др.

Метод линейного программирования удачно ис­пользован С.М. Джонсоном для решения задачи на­хождения оптимального по календарному времени плана обработки m деталей на двух станках. Алго­ритм Джонсона чрезвычайно прост. Выбирается са­мое короткое операционное время, и если оно отно­сится к первому станку, планируют выполнение зада­ния первым на первом станке, а если ко второму - то последним. Затем процедура повторяется до полного перебора всех заданий на обоих станках. Имеются многочисленные обобщения правила Джонсона для различных случаев трехстадийной обработки деталей. Однако этот алгоритм неприменим для случаев обра­ботки деталей на большем количестве станков.

Метод динамического программирования удачно использован Р. Беллманом для однооперационного производства. Он дал частное решение задачи опти­мального календарного планирования обработки со­вокупности изделий, имеющих одинаковый процесс производства, но различных по длительности опера­ций обработки. Запуск изделий в производство необ­ходимо осуществлять, соблюдая условие: min (t11, t22) < min (t12, t21), где: t11 - трудоемкость выполнения первой операции над изделием, первым запускаем в производство; t22 - трудоемкость выполнения вто­рой операции над изделием, вторым запускаем в про­изводство, а t12 и t2l - соответственно наоборот.

Метод «ветвей и границ», являющийся комбина­торным методом дискретного программирования, предполагает уменьшение множества допустимых решений, вплоть до получения конечного множества, при котором оказывается возможным применение метода перебора. В этом методе происходит последо­вательный выбор пары номеров деталей для получе­ния оптимальной последовательности. Составление последовательности номеров деталей для запуска в производство происходит в процессе работы итерационного алгоритма. На каждой итерации выбираются две детали и помещаются на позиции: (n + 1) и (d – n), где n - номер итерации, a d- количество наименова­ний деталей, участвующих в производственном про­цессе. Эффективность метода «ветвей и границ» зави­сит от уровня, на котором происходит «отсечение» ветви. В общем случае этот метод не исключает пол­ный перебор всех возможных вариантов.

Типичные модели линейного, линейного цело­численного и квадратичного целочисленного про­граммирования свидетельствуют о том, что в них мо­гут быть отражены многие ограничения задачи кален­дарного планирования. В частности, в этих моделях, в форме ограничений на переменные, могут быть выражены требования, накладываемые на сроки выпуска этих деталей. Допускается обработка деталей партия­ми, но для этого необходимо некоторое предвари­тельное преобразование исходной информации.

Данные модели имеют ограниченное применение при моделировании производственных процессов. Главным недостатком является быстрый рост разме­ров моделей с ростом задачи календарного планиро­вания. Точные методы оптимизации применимы лишь для частных и небольших по размеру задач. На маши­ностроительных предприятиях составление опти­мального календарного графика усложняется широ­той номенклатуры выпускаемых изделий и является динамической, вероятностной задачей большой раз­мерности. Поэтому наряду с разработкой точных ме­тодов интенсивно развиваются приближенные методы.

К числу приближенных методов оптимизации задач календарного планирования относятся: частич­ный и направленный перебор, метод Монте-Карло, аналитико-приоритетные, эвристические и др. мето­ды.

Метод Монте-Карло аналогичен методу перебо­ра и оценки вариантов с той разницей, что оценивает­ся некоторое ограниченное подмножество вариантов, выбор которых производится некоторым случайным образом. Решение задачи календарного планирования методом Монте-Карло можно рассматривать как не­которую задачу статистического моделирования про­изводственного процесса. Метод Монте-Карло имеет ограниченное применение, так как может потребовать перебора и оценки достаточно большого количества вариантов.

В последнее время к решению задач календарно­го планирования стала привлекаться теория массового обслуживания. Такая возможность появилась в связи с развитием специальной теории очередей с приори­тетом. Однако если в задачах массового обслужива­ния поток требований на обслуживание является сво­бодным процессом, то в задачах календарного плани­рования требования поступают в детерминированном порядке. Вместе с тем при прохождении требований (партии деталеопераций) через большое количество обрабатывающих устройств (производственных яче­ек) происходят задержки в обслуживании, и поступ­ление требования на следующее обрабатывающее устройство может быть рассмотрено как случайное событие. В таком плане эта связь теории расписаний с задачами теории очередей с приоритетом обслужива­ния может быть использована как средство прибли­женного решения теории расписаний.

Многие задачи календарного планирования от­носятся к классу задач, для которых трудна конкрет­ная аналитическая постановка, неярко выражена ве­личина критерия эффективности и отсутствуют эф­фективные алгоритмы численного решения. Послед­нее связано с тем, что минимизируемые функции комбинаторных задач лежат не в непрерывной облас­ти переменных, а на различных дискретных переста­новках элементов. Следовательно, применение при­ближенных методов, основанных на сочетании анали­тических принципов и моделировании календарных планов с использованием правил предпочтительности, является наиболее перспективным направлением практического решения данного класса задач.

Среди приближенных методов различают боль­шую группу аналитико-приоритетных методов. Аналитико-приоритетные методы не следует смешивать с эвристическими. В аналитико-приоритетных методах имеется математическая модель с соответствующей функцией - критерием, что позволяет приблизить решение к оптимальному, тогда как в эвристических методах такая функция отсутствует, либо имеется в неявно выраженной форме или же задается как ло­кальная функция приоритета. Эвристические методы строятся на использовании установленных свойств и приемов решения задач других смежных групп, а также интуитивных свойств и приемов поиска.

Можно выделить семь наиболее удачных правил предпочтительности для формирования приоритетов календарного планирования последовательности работ1.

1. FCFS (Fist - Come, Fist - Served) - первым вошел - первым обслужен. Работы выполняются в порядке поступления в подразделение.

2. SOT (Short's Operating Time) - по кратчайше­му времени выполнения. Сначала выполняется работа с самым коротким временем выполнения, затем про­цедура повторяется для оставшихся работ.

3. D date (Due Date) - по установленным срокам окончания. Первой выполняется работа с самой ран­ней датой начала выполнения.

4. SD - по ранней дате начала выполнения, оп­ределяемой как установленная дата выполнения рабо­ты, минус время выполнения работы.

5. STR (Slack Time Remaining) - по наименьше­му оставшемуся запасу времени, который вычисляет­ся как разность между временем, остающимся до ус­тановленной даты выполнения, и временем выполне­ния работы.

6. STR/OP (Slack Time Remaining per Operation) - по наименьшему оставшемуся запасу времени на одну операцию, которое определяется как разность времени, оставшегося до установленной даты выпол­нения работ, минус время оставшихся операций, де­ленная на количество оставшихся операций. Заказы с самым коротким STR/OP выполняются первыми.

7. LCFS (Last - Come, First - Served) - последним вошел - первым обслужен. Первой выполняется рабо­та, поступившая последней в подразделение.

Иногда используют различные комбинации функ­ций предпочтения, но это требует многовариантного перебора. В результате отработки информации, полученной при выполнении на модели серии эксперимен­тов каждый раз с новым правилом очередности, были выявлены законы распределения и другие оценки наи­более вероятных длительностей производственных циклов, ________________________

1 Donald W. Fogarty, Yohn H. Blackstone, Yr. And Tho­mas R. Hoffman. Production and Inventory management (Cincinnati: South - Western Publishing, 1991). P. 452 - 453.

опозданий в выполнении работ по сравнению с плановыми сроками, объемом незавершенного произ­водства, простоев оборудования и т.д. Однако при проведении оптимизации метод не учитывает взаимного влияния моментов начала и окончания смежных опе­раций на разных станках, что значительно снижает степень оптимальности полученного результата.

В условиях многопредметных автоматизирован­ных производственных систем задача построения ка­лендарных графиков существенно усложняется. Решение задачи формирования графика производства деталей (парий деталей), имеющих произвольное чис­ло и очередность выполнения операций и запланиро­ванных к изготовлению на одном и том же техноло­гическом оборудовании является комбинаторной за­дачей большой размерности.

В этих условиях наиболее удачным методом яв­ляется аналитический метод, учитывающий взаимное влияние пооперационных трудоемкостей обработки деталей на совокупный цикл их обработки. Метод предполагает оптимизацию длительности совокупно­го цикла обработки партий (групп) деталей путем анализа и минимизации величин смещения. При этом суммарное время опережения запуска деталей в об­работку на каждой технологически связанной паре рабочих мест дифференцируется на две составляю­щие, первая из которых учитывает несинхронность операций технологических процессов обработки де­талей, а вторая - время обработки передаточных пар­тий деталей.

В этом случае задача моделирования сводится к тому, чтобы время опережения начала и окончания обработки партий деталей каждого наименования на передающем и получающем детали рабочих местах обеспечивало непрерывную обработку партий дета­лей с максимальной параллельностью.

Длительность производственного цикла обра­ботки партий деталей в рассматриваемой постановке решения задачи может быть определена по формуле

(1)

где - номер рабочего места, начинающего процесс обработки деталей данной группы;

k - номер рабочего места, на кото­ром заканчивается процесс обработки деталей данной группы;

m - количество групп деталей;

d - количество деталей в группе;

- величина смещения на j-м рабочем месте, на котором начинается процесс обработки i-й партии деталей;

Характеристики

Тип файла
Документ
Размер
395,77 Kb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее