122596 (716954), страница 4
Текст из файла (страница 4)
В машинах второй группы осуществляется стабилизация синтетических волокнистых материалов, изделий из триацетилцеллюлозных волокон или из смеси волокон кратковременным нагреванием их в течение 10—60 с до температуры, близкой к температуре размягчения или плавления (обычно 180—230 °С), с последующим охлаждением. При охлаждении происходит фиксирование достигнутого состояния волокна, отвечающего минимальному уровню потенциальной энергии макромолекулы полимера, при котором выравниваются внутренние напряжения молекулярных цепей, и волокно приобретает устойчивое состояние.
Обогрев воздуха в термических зрельниках возможен с помощью паровых и электрических калориферов. Последним отдается предпочтение, так как они проще и более надежны в эксплуатации.
Еще более перспективен газовый обогрев, рассмотренный выше, который обходится в 10—15 раз дешевле электрического. Для увеличения длины заправки ткани и соответственно продолжительности термообработки и производительности машины на некоторых отечественных зрельниках предусматривается заправка петля в петле, которая сложнее в эксплуатации, из-за чего предпочтительнее заправка по роликам одинакового диаметра. В последних случаях можно в 1,5—2 раза интенсифицировать термообработку, используя сопловой обдув ткани.
Рис. 14. Схема термического зрельника ТО-120-1
Процесс обработки в термических зрельниках складывается из трех периодов: первый—высушивание ткани от влажности 3—10 % до нулевой, второй—нагрев ткани до температуры воздуха и выдерживание при этой температуре в течение нескольких минут и третий — охлаждение. Во время выдерживания ткани в термическом зрельнике на волокне происходят физико-химические реакции, требующие расхода тепла (полимеризация, поликонденсация), которое необходимо непрерывно подводить с помощью циркуляционных вентиляторов. Одновременно с этим с помощью вытяжной вентиляции необходимо отводить газообразные продукты, выделяющиеся при указанных реакциях, что создает в камере некоторое разрежение, препятствующее выходу этих продуктов за пределы камеры (в цех). В результате в термических зрельниках значительная часть тепла (около 35—40 %) тратится непроизводительно— на нагрев транзитного воздуха, подсасываемого в камеру и удаляемого вытяжной вентиляцией.
На рис. 14 показана схема термического зрельника ТО-120-1 конвективного типа с длиной заправки ткани 250 м, что при скорости движения ткани 25—135 м/мин позволяет варьировать продолжительность обработки соответственно от 10 до 2 мин.
Зрельник состоит из заправочного устройства 1—4 и двухсекционной термокамеры, в которой ткань проводится по вращающимся роликам 5 с заправкой петля в петле 7, охладительной камеры и люлечного укладчика 9.
Термокамера состоит из двух секций, между которыми установлены роликовые компенсаторы 6. Привод машины осуществлен по системе Г—Д с плавной регулировкой скоростей; верхние ряды роликов приводные. В средней части камеры установлены два вентилятора и электрокалорифер.
4.3.Сушильно-ширильные и стабилизационные машины
Сушильно-ширильные машины предназначены для сушки тканей при одновременном ширении, что позволяет получать добротные ткани, отличающиеся ровнотой по ширине, гладкой поверхностью без засечек и загнутых кромок, имеющие красивый внешний вид. Указанная отделка достигается на ширильных машинах, установленных в сушильных или стабилизационных камерах. В производственной практике эти машины известны под названиями: сушильная рама, шпанрама, планрама, воздушная рама и др.
Современные непрерывнодействующие Сушильно-ширильные (СШМ) и сушильно-ширильно-стабилизационные (СШСМ) машины являются сложным дорогостоящим оборудованием, конструкция которого больше по сравнению с другими машинами отделочного производства отражает прогресс в области машиностроения и технологии отделки тканей. В большинстве своем они универсальны и в составе линий способны выполнять комплекс операций отделки: пропитывание, сушку, ширение по утку, усадку по основе, обрезку и смазывание кромок трикотажных полотен и др. Эти машины пригодны для обработки широкого ассортимента тканей. Они обеспечивают высококачественную обработку, хорошо разглаживают ткань, расправляют загнутые кромки и в ряде случаев исправляют диагональные перекосы уточных нитей. Большинство СШМ и СШСМ выпускается в настоящее время в виде однопольных машин с игольчатыми и ножевыми клуппами, но предпочтение отдается игольчатым клуппам. Машины снабжаются механизмами опережения и позволяют подавать ткань на иглы в свободном состоянии без натяжения по основе (см. рис. 45). В этих случаях процесс сушки сопровождается усадкой ткани по длине.
Игольчатые клуппы снабжаются специальными защелками, благодаря чему цепное поле можно передвигать не только в горизонтальной, но и в вертикальной плоскости и удерживать кромку ткани клуппами работающими в перевернутом на 180° положении. В связи с этим цепное поле игольчатых клуппов может устанавливаться в несколько ярусов (этажей), называемых полем, в которых цепи движутся одна над другой в горизонтальных плоскостях; заправочная длина ткани при этом значительно увеличивается, а мощность сушилки соответственно возрастает.
Машины с ножевыми и комбинированными клуппами делаются только однопольными, так как их клуппы не могут работать в перевернутом положении.
Однодольные машины предназначены преимущественно для обработки легких и средних по массе тканей. СШМ этой группы обычно используются для досушивания тканей, предварительно подсушенных до 25—35 %-ной влажности на барабанной, сопловой или другой сушилке активного действия. Такое сочетание сушильных устройств позволяет использовать их наилучшим образом и повысить скорость (производительность) движения ткани в СШМ при относительно короткой длине цепного сушильного поля, получая при этом разглаженную и ровную по ширине ткань.
В машинах с ножевыми клуппами возможность работы с опережением и получение усадки исключаются.
Однопольные СШМ разработаны на единой конструктивной основе, отличаясь одна от другой числом секций (5—10) и рабочими ширинами 1200, 1400, 1800, .2200 м.м. Машины предназначены для ширения и сушки хлопчатобумажных и вискозно-штапельных тканей в составе поточных линий. Универсальные (комбинированные) клуппы позволяют осуществлять режим обработки при скорости движения до 125 м/мин и температуре воздуха до 140°С.
Технологическая схема однопольной сушильно-ширильной машины показана на рис. 15. Она представляет собой цепную ширильную машину 11, установленную в сушильной камере 10 с системой подогрева воздуха калориферами и обдува ткани.
Ткань последовательно заправляется на тянульный вал 1, расправляется на винтовых тканерасправителях 2 и 4, между которыми установлен перекосный ролик 3, поступает на второй обрезиненный тянульный вал 5, с помощью кромкорасправителей 6, столика 7, накалывающих 8 и докалывающих 9 щеток захватывается за кромки клуппной цепью ширильной машины 11 и проводится через все секции сушильной камеры. Высушенная ткань подается на следующую машину (или на выборочный механизм). На СШМ и СТПГ.М перед поступлением на цепное поле положение кромок полотна ткани контролируется электромеханическими или фотоэлектрическими кромконаблюдателями, установленными со стороны кромок. При малейшем отклонении ткани в сторону и выходе кромки из цепей прибор подает команду электродвигателю, перемещающему направляющую параллель вместе с клуппной цепью на сближение с кромкой,
Рис. 15. Технологическая схема однодольной сушильно-ширильной машины
после захвата которой двигатель переключается на обратное вращение, и параллель с клуппной цепью возвращается в исходное положение.
Тянульные валы 1 и 5 получают вращение через вариаторы скоростей, что позволяет регулировать натяжение полотна вдоль основы и скорость его подачи на цепное поле с опережением, которое может достигать 20 %.
Циркуляция воздуха в СШМ производится 'осевым или центробежным вентилятором. Существует много различных циркуляционных систем, но каждая из них обеспечивает двусторонний сопловой обдув ткани. Более рационально располагать вентиляторы сбоку, так как в этом случае сокращается зона разрежения, соприкасающаяся с внешними стенками сушильной камеры, что способствует уменьшению подсоса холодного воздуха и, кроме того, не загромождается доступ к внутренним частям машины. На рис. 16 показана схема циркуляции воздуха в зоне сушилки СШМ с боковым расположением осевого вентилятора 2, приводимого в движение электродвигателем 1.
Воздух через верхний 3 и нижний 4 короба поступает на цепное поле, сильными струями сверху и снизу обдувает ткань 5, которая клуппами 7 транспортируется через сушильную камеру. Отработавший воздух через фильтры направляется в калориферы 8, а после насыщения выбрасывается через патрубок 6 в места максимального скопления испаренной влаги.
Для лучшего использования вентиляционной мощности щелевые сопла выполняются телескопическими, т. е. раздвижными, у которых длина щели сопла изменяется в соответствии с изменением расстояния между цепями. Выпускаются также машины, имеющие сопла с круглыми отверстиями; в этих случаях сопловые коробки имеют несколько рядов отверстий, образующих сетку.
Рис. 16. Схема циркуляции воздуха в зоне сушилки СШМ
Однопольные СШСМ отличаются от СШМ наличием стабилизационных и охладительных камер, а кроме того, все секции, как правило, имеют устройства для отвода отработавших газов, выделяющихся при термических обработках тканей. Эти машины оснащены игольчатыми клуппными цепями. Во всех секциях, предназначенных для сушки и ширения, установлены паровые калориферы, нагревающие воздух до температуры 130—150°С, а в секции для стабилизации—электрические калориферы, нагревающие воздух до температуры 200—250 °С.
В нашей стране выпускаются стабилизационные машины СШС-6/180 и СШС-4-220-Т (для трикотажного полотна), которые пригодны и для обработки хлопко- или вискозно-лавсано-вых тканей.
Многопольные СШМ предназначаются главным образом для сушки тяжелых тканей поверхностной плотностью более 400 г/м2 и находят применение для сушки шерстяных тканей, поэтому в данной книге не рассматриваются.
Агрегирование СШМ и СШСМ с различными машинами для мокрой и сухой отделки позволяет создавать поточные линии с законченным циклом отделки, что отвечает требованиям современного производства.
4.4 Специальные способы сушки
К специальным способам сушки относятся: сушка инфракрасными лучами, токами высокой частоты (ТВЧ), сушка в псев-доожиженном или сыпучем слое и сушка в вакууме. Эти способы не получили широкого распространения, но находят применение в отдельных случаях, когда они более всего эффективны. Особенно это относится к использованию лучистой энергии.
Сушка инфракрасными лучами позволяет подводить к материалу потоки трттля в десятки раз превышающие соответствующие потоки при конвективной или контактной сушке. Однако известно, что при высушивании толстослойных материалов на скорость сушки большое влияние оказывает скорость внутренней диффузии и в первый момент сушки под действием радиации влага даже может перемещаться в глубь слоя. В связи с этим радиационная сушка более целесообразна для тонких тканей.
На практике инфракрасные излучатели используются для подсушки аппретированных или напечатанных тканей и в термозрельниках для создания высокой температуры. Применяются излучатели электрические или газовые, темные или светлые. К темным относятся керамические, кварцевые или металлические трубки, обогреваемые изнутри электрической спиралью или газом, к светлым—лампы накаливания с повышенным коэффициентом теплоотдачи.
Рис. 17. Схема универсальной радиационной термокамеры УРТК-120-4
На рис. 17 показана схема универсальной радиационной термокамеры УРТК-120-4, предназначенной для обработки тканей при несминаемой отделке. Ткань, предварительно нагретая на СБМ до температуры 100—114°С, поступает по направляющим роликам 2, проходит через камеру между излучающими панелями 1 и 3 и нагревается с двух сторон до температуры 160—200 °С, контролируемой датчиком 4, и выводится через щель для последующего охлаждения и накатки в ролик. В красильных линиях ткань без охлаждения поступает на пропитывание красильным раствором. Подобные камеры можно агрегировать с СБМ, СШМ и другими машинами, дополняя их действие термообработкой ткани. Установки рассчитаны на мощность токоприемников от 73 до 123 кВт. Длина заправки в зоне излучения всего 4 м, что при скорости продвижения ткани 40—60 м/мин обеспечит обработку в течение 6—4 с. Несмотря на кратковременность, эффективность обработки высокая. Например, установка УРТК-120-1 входит в состав линии ЛТ-120 термической обработки ткани (рис. 18). В состав линии входят: раскатная машина Р-120-5 1; сушильная СМБ2-1/120 2;термокамера УРТК-120-1 3; накатная машина Н-120-5 4. Скорость продвижения ткани 25—125 м/мин, влажность ткани 5— 7 %, установленная мощность токоприемников переменного тока
Рис. 18. Линия термической обработки ЛТ-120















