112928 (710957)

Файл №710957 112928 (Методы математической статистики, использующиеся в педагогических экспериментах)112928 (710957)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Министерство образования и науки Украины

Открытый международный университет развития человека “Украина”

Горловский филиал

Кафедра физической реабилитации

РЕФЕРАТ

по дисциплине: Методы исследований в физической культуре и спорте,

физической реабилитации

ТЕМА

Методы математической статистики, использующиеся в педагогических экспериментах

Выполнила:

Хворостяная Кристина Игоревна

2008

СОДЕРЖАНИЕ

Введение

  1. Вычисление средней арифметической величины

  2. Вычисление среднего квадратичного отклонения

  3. Вычисление средней ошибки среднего арифметического

  4. Вычисление средней ошибки разности

ВВЕДЕНИЕ

При проведении педагогического эксперимента для установления достоверности различий прибегают к вычислению некоторых статистических показателей (параметров).

  1. ВЫЧИСЛЕНИЕ СРЕДНЕЙ АРИФМЕТИЧЕСКОЙ ВЕЛИЧИНЫ

Условное обозначение средней арифметической величины через М (от латинского слова Media) чаще применяется в медицинских и педагогических исследованиях. В математической статистике предпочитают обозначение через .

Средняя арифметическая величина является производной, обобщающей количественные признаки ряда однородных показателей (совокупности). Выражая одним числом определенную совокупность, она как бы ослабляет влияние случайных индивидуальных отклонений, и акцентирует некую обобщенную количественную характеристику, наиболее типичное свойство изучаемого ряда показателей.

Определяя значение средней арифметической величины, следует придерживаться некоторых правил.

  1. Средняя арифметическая величина может характеризовать только те признаки изучаемого объекта, которые присущи всей совокупности, но в разной количественной мере (например, уровень развития быстроты движений характерен для каждого человека, хотя и в разной количественной мере). Средняя арифметическая величина не может характеризовать количественную меру тех признаков, которые одной части совокупности присущи, а другой нет, т. е. она не может отражать присутствие или отсутствие того или иного признака (например, умение или неумение выполнять то или иное двигательное действие).

  2. Средняя арифметическая величина должна включать все показатели, полученные в данном исследовании. Произвольное исключение даже некоторых из них неизбежно приведет к искажению конечного результата.

  3. Средняя арифметическая величина обязана отражать только однородную совокупность. Нельзя, например, определять средний уровень физического развития школьников, не разделив их предварительно по возрасту и полу.

  4. Средняя арифметическая величина должна вычисляться на достаточно большой совокупности, размеры которой определяются в каждом конкретном случае отдельно (см. «Подбор исследуемых»).

  5. Необходимо стремиться к тому, чтобы средняя арифметическая величина имела четкие и простые свойства, позволяющие легко и быстро ее вычислять.

  6. Средняя арифметическая величина должна обладать достаточной устойчивостью к действию случайных факторов. Только в этом случае она будет отражать действительное состояние изучаемого явления, а не его случайные изменения.

  7. Точность вычисления средней арифметической величины должна соответствовать содержанию изучаемого педагогического явления. В некоторых случаях нет необходимости в расчетах с большой точностью, в других - большая точность нужна при вычислениях, но совершенно не нужна в выводах. Например, при расчете средних величин числа подтягиваний на перекладине можно пользоваться и сотыми долями целого, но представлять и выводах, что исследуемые в среднем подтянулись 7,83 раза, было бы неграмотна, так как невозможно измерение с подобной точностью. В этом случае необходимо в выводах представлять числа, округленные до целых единиц.

В простейшем случае этот показатель вычисляется путем сложения всех полученных значений (которые называются вариантами) и деления суммы на число вариант:

где - знак суммирования;

V - полученные в исследовании значения (варианты);

п - число вариант.

По этой формуле вычисляется так называемая простая средняя арифметическая величина. Применяется она в тех случаях, когда имеется небольшое число вариант.

При большом числе вариант прибегают к вычислению так называемой взвешенной средней арифметической величины. С этой целью строят ряд распределения, или вариационный ряд, который представляет собой ряд вариант и их частот, характеризующих какой-нибудь признак в убывающем или возрастающем порядке. Например, в нашем случае измерение точности попадания мячом в цель дало 125 вариант, т. е. в группе I, где применялась методика обучения «А», одноразово исследовалось 125 детей с числовым выражением от 0 (точное попадание в цель) до 21,5 см (максимальное отклонение от цели). Каждое числовое выражение встречалось в исследовании один и более раз, например «0» встретился 28 раз. Другими словами, 28 участников эксперимента точно попали в цель. Этот показатель называется числом наблюдений или частотой вариант и условно обозначается буквой «Р» (число наблюдений составляет часть числа вариант).

Для упрощения числовых операций все 125 вариант разбиваются на классы с величиной интервала 1,9 см. Число классов зависит от величины колебаний вариант (разности между максимальной и минимальной вариантами), наличия вариант для каждого класса (если, например, для первого класса - «0 - 1,9» - нет соответствующих вариант, т.е. ни один исследуемый не имел точных попаданий или отклонений от цели в пределах от 0 до 1,9 см, то подобный класс не вносится в вариационный ряд) и, наконец, требуемой точности вычисления, (чем больше классов, тем точность вычисления выше). Вполне понятно, что чем больше величина интервала, тем меньше число классов при одной и той же величине колебаний вариант.

После разбивки вариант по классам в каждом классе определяется срединная варианта «Vc », и для каждой срединной варианты проставляется число наблюдений. Пример этих операций, и дальнейший ход вычислений приведены в следующей таблице:

Классы

Серединные варианты VC

Число набл, р

VCP

VC-M=d

d2

d2P

0 – 1.9

1

28

28

-4.6

21.16

592.48

2 – 3.9

3

29

87

-2.6

6.76

196.04

4 – 5.9

5

22

110

-0.6

0.36

7.92

6 – 7.9

7

13

91

1.4

1.96

25.48

8 – 9.9

9

11

99

3.4

11.56

127.16

10 – 11.9

11

13

143

5.4

29.16

379.08

12 – 13.9

13

4

52

7.4

54.76

219.04

14 – 15.9

15

2

30

9.4

88.36

176.72

16 – 17.9

17

1

17

11.4

130.00

130.00

18 – 19.9

19

1

19

13.4

179.60

179.60

20 – 21.9

21

1

21

15.4

237.20

237.20

125

697

2270.72

Очередность числовых операций:

  1. вычислить сумму числа наблюдений (в нашем примере она равна 125);

  2. вычислить произведение каждой срединной варианты на ее частоту (например, 1*28 = 28);

  3. вычислить сумму произведений срединных вариант на их частоты (в нашем примере она равна 697);

  4. вычислить взвешенную среднюю арифметическую величину по формуле:

Средняя арифметическая величина позволяет сравнивать и оценивать группы изучаемых явлений в целом. Однако для характеристики группы явлений только этой величины явно недостаточно, так как размер колебаний вариант, из которых она складывается, может быть различным. Поэтому в характеристику группы явлений необходимо ввести такой показатель, который давал бы представление о величине колебаний вариант около их средней величины.

2. ВЫЧИСЛЕНИЕ СРЕДНЕГО КВАДРАТИЧНОГО ОТКЛОНЕНИЯ

Этот статистический параметр называется еще стандартным отклонением или просто стандартом. Условное обозначение его - . Величина среднего квадратичного отклонения является показателем рассеивания (т. е. отклонений вариант, которые получены в исследовании, от их средней величины) и призвана дополнять характеристику группы явлений.

Вычисление этого показателя производится в следующем порядке (см. табл.):

  1. вычисляется разность между каждой срединной вариантой и средней арифметической величиной (например, 1 - 5,6 = - 4,6); вычисленный таким образом показатель условно обозначается буквой «d»;

  2. чтобы избежать числовых операций с положительными и отрицательными величинами, все полученные разности возводятся в квадрат (например, - 4,62 =21,16);

  3. вычисляется произведение каждого квадрата разности на его частоту (например, 21,16*28 = 592,48);

  4. вычисляется сумма всех полученных произведений квадратов разностей и их частот (в нашем примере она равняется 2270,72);

  5. вычисляется среднее квадратичное отклонение по формуле:

При малом числе наблюдений среднее квадратическое отклонение рекомендуется вычислять по следующей формуле:

Как видно из приведенного примера, вычисление среднего квадратичного отклонения общепринятым методом не требует от исследователя большой математической подготовки, но оно связано с большой затратой времени на выполнение многочисленных вспомогательных вычислений. В настоящее время все большее распространение получает вычисление среднего квадратичного отклонения по размаху (под размахом понимается разность между наибольшим и наименьшим значениями измеряемой величины, т. е. величина колебания вариант).

На основе теории распределения размаха для статистических совокупностей (Н.А. Толоконцев, 1961; и др.) разработан способ определения среднего квадратичного отклонения по формуле:

где - наибольшее значение варианты;

- наименьшее значение варианты;

К - табличный коэффициент, соответствующий определенной величине размаха.

Характеристики

Тип файла
Документ
Размер
834,79 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6624
Авторов
на СтудИзбе
294
Средний доход
с одного платного файла
Обучение Подробнее