111933 (710691), страница 8

Файл №710691 111933 (Разработка электронного учебника по математике для студентов I курса, отделения информатика - иностранный язык) 8 страница111933 (710691) страница 82016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

Однако действительных чисел недостаточно для того, чтобы решить любое квадратное уравнение с действительными коэффициентами. Например, уравнение вида х2 + 1= 0 действительных корней не имеет. А это означает, что система действительных чисел нуждается в расширении.

О п р е д е л е н и е. Множество чисел вида а + bi, а, b R, i2 = -1, называется системой комплексных чисел С.

Подчеркнем, что в отличие от множества действительных чисел (R), множество комплексных чисел (С) с операциями определенными на нем не обладает свойством упорядоченности, так как имеется элемент , в частности, нельзя определить понятие быть положительным.

а - действительная часть комплексного числа, bi - мнимая часть комплексного числа, i = - мнимая единица, b - коэффициент при мнимой единице. Запись числа в виде z = а + bi называется алгебраической. Комплексное число z = а + bi равно нулю тогда и только тогда, когда а = 0 и b = 0. Два комплексных числа z1 = а1 + b1i и z2 = а2 + b2i называются равными, если а1 = a2, и b1 = b2, в этом случае пишут: z1 = z2.

Число = а - bi называется сопряженным для числа z = а + bi, при этом числа z и называются взаимно сопряженными. Например, числа z = 2 + i и z = 2 - i; z = -5 - i и z = -5 + i, z = i и z = -i будут взаимно сопряженными.

Арифметические действия над комплексными числами проводятся по следующим правилам. Пусть z1= а1+b1i z2= а2+b2i. Тогда: ; ;

. Таким образом, видим, что если z= a+bi и =a-bi, то z = a2+b2.

П р и м е р ы. Выполнить действия:

1. (2 + 3i) + (8 - 5i) = 10 - 2i.

2. (-1 - i) - (2 + 3i) = -3 - 4i.

3. (10 - i)(2 + i) = 21+8i.

4. .

Геометрически комплексные числа можно изображать точками плоскости, абсциссами которых служат действительные части, а ординатами - коэффициенты при мнимой единице. Таким образом, если z= a+bi, то на плоскости ХОУ это будет точка М(а, b). Так как любой вектор плоскости с началом в точке O(0,0) определяется координатами конца, то комплексные числа также изображают радиус – векторами (рис. 1).

Рис. 1

Кроме алгебраической формы комплексное число может быть записано с помощью тригонометрической формы. Введем следующие определения.

О п р е д е л е н и е. Модулем комплексного числа z= а+ bi называется арифметический квадратный корень из суммы квадратов его действительной части и коэффициента при мнимой единице: |z| = r = .

О п р е д е л е н и е. Аргументом комплексного числа z = а + bi называется число , для которого .

Возьмем на плоскости точку М(а, b), пусть ей соответствует комплексное число z = а + bi. Обозначим через угол, который образует радиус – вектор ОМ с положительным направлением оси ОХ.

Из ОМА (рис.2) AO = OMcos, AM = ОМsin, но ОМ= = г, ОА =а; AM =b; тогда z = а + bi = rcos + irsin = r(cos + isin).

Запись числа z = r(cos + isin) называется тригонометрической формой комплексного числа.

С геометрической точки зрения, модуль комплексного числа представляет собой длину радиус-вектора, который это число изображает, а аргумент - это угол, который образует данный радиус-вектор с положительным направлением оси ОХ.

П р и м е р. Найти модуль, аргумент и записать число z = 1- i в тригонометрической форме.

Имеем r = = ; cos = ; sin = ; тогда = и .

Используя тригонометрическую форму комплексного числа, умножение и деление комплексных чисел можно выполнять так: если , , то z1z2 = r1r2[cos (1+2) + isin (1+2)], .

Операции же возведения в целую степень и извлечения корня удобнее проводить в тригонометрической форме. Так, для возведения в целую степень n комплексного числа z = r(cos + isin) известна формула Муавра:

zn = rn(cos n + isin n).

Отметим, что возведение комплексных чисел в натуральную степень можно выполнять и в алгебраической форме, просто перемножая число само на себя или воспользовавшись биномом Ньютона.

П р и м е р. Найти (2 + 2i)5.

Если z = 2 +2i, то r = , cos = , sin = , = . Тогда

, а .

Для извлечения корня степени n N из комплексного числа z = =r(cos + isin ) используется следующая формула:

, k = 0, 1, 2, ..., n-1.

П р и м e p. Найти . Найдем тригонометрическую форму подкоренного выражения:

; ; ; ; .

, k = 0, 1, 2, 3.

;

;

;

.

Контрольные вопросы

После ознакомления с теоретическим материалом студентам предлагается ответить на несколько вопросов по данной теме. Это делается с целью закрепления нового материала и контроля его усвояемости. Форма ввода ответа на вопросы предполагает использование как классической кроудеровской системы, так и возможность ввода конструированного ответа, когда студент конструирует свой ответ из предложенных фрагментов. Система вопросов подбиралась с учетом следующих требований:

– широкий охват нового теоретического материала;

– разноплановость в смысле возможных вариантов ответов;

– отсутствие вопросов предполагающих ответы типа «да» – «нет» и ответов требующих пояснения.

Блок ответов на контрольные вопросы устроен таким образом, что дав ответ на первый вопрос, студенты могут перейти к последнему, затем вернуться назад и исправить первый ответ. Ответ, данный на вопрос, не исчезает, он остается доступным для редактирования и по прошествию некоторого времени. Во время ответа на вопросы доступ к теоретическому материалу не возможен. После получения ответов на все вопросы студентам предлагается закрыть сеанс ответов на вопросы и перейти к решению практических заданий. После этого момента вернуться к вопросам и что-либо исправить уже нельзя. По окончанию сеанса работы с учебником система проанализирует полученные ответы на предмет их правильности и полноты и выставит оценку по пятибальной шкале.

Ниже приводится схема вопросов предлагаемых студентам:

1. Дайте определение числового множества.

2. Какие числовые системы вам известны?

3. Какие принципы лежат в основе расширения числовых множеств?

4. Как определяется множество натуральных чисел?

5. Что собой представляет метод математической индукции?

6. Дайте определение множества целых чисел.

7. Какие основные факты теории целых чисел вам известны?

8. Как определяется множество рациональных чисел?

9. Дайте определение множества действительных чисел.

10. Дайте определение системы комплексных чисел.

11. Какие формы употребляются для записи комплексных чисел?

12. Какова геометрическая интерпретация комплексного числа, его модуля и аргумента?

13. Как умножаются, делятся и возводятся в степень комплексные числа, заданные в тригонометрической форме.

14. Как извлечь корень n-й степени из комплексного числа?

Каждый из вопросов предполагает только один правильный ответ, ответ, не совпадающий с правильным, считается неправильным.

После завершения ответов на вопросы студенты переходят к решению практических заданий.

Практические задания

Целью включения в учебник практических заданий являлось:

– выработка у студентов устойчивых навыков решения подобных заданий;

– закрепление на практике полученных теоретических знаний;

– оценка качества усвоения студентами нового материала;

– повторение и восстановление в памяти ранее изученного материала;

– выработка у студентов навыков компьютерного общения и самостоятельного решения задач в условиях ограниченного времени.

При подборе практических заданий учитывались следующие требования:

– всестороннее отражение в заданиях нового теоретического материала;

– сходность предлагаемых заданий с теми, что рассматривались ранее в виде решенных примеров;

– отсутствие примеров повышенной трудности или требующих нестандартного подхода;

– простота получаемых ответов и удобство их ввода и редактирования.

Ниже приводиться схема предлагаемых практических заданий:

1. По делимому а и остатку r найти делители b и соответствующие частные q, если:

а) a = 100; r = 6; б) а = 158; r = 37; в) a = 497; r = 16.

2. Найти наибольшее целое число, дающее при делении на b = 13 частное q = 17.

3. Найти НОД каждой из следующих систем чисел:

а) (120; 144); б) (424; 477); в) (299; 391; 667).

4. Найти НОК каждой из следующих систем чисел:

а) [120; 96]; б) [75; 114]; в) [118; 177;413].

5. Каким числом, рациональным или иррациональным, является значение выражения 8 - 5х при х = 0,6; 1,2; -3,4?

6.Среди чисел ; 0; 0,(25); ; 3,14; ; 0,818118111811118... укажите рациональные и иррациональные.

7. Выполнить указанные действия:

а) (2 + 3i) (4 - 5i) + (2 - 3i) (4 + 5i); б) .

8. Найти тригонометрическую форму комплексного числа:

а) i; б) -2; в) 1 + i; г) .

Характеристики

Тип файла
Документ
Размер
2,31 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6510
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее