111294 (709900), страница 2
Текст из файла (страница 2)
Принцип целостности
Этот принцип является одним из наиболее важных. Это означает, что при разработке педагогической системы необходимо добиваться гармонического взаимодействия всех компонентов педагогической системы как по горизонтали (в рамках одного периода обучения – четверти, учебного года), так и по вертикали – на весь период обучения.
Принцип выделения основной структуры системы
Важность данного принципа обосновывается в теории систем И.Д. Пехлецкого. Исследователь считает, что это один из основных принципов, которые должен «наложить свой отпечаток на все фундаментальные определения и понятия теории системы». Причем смысл принципа выделения основной структуры системы состоит в том, что «всякое научное рассмотрение, анализ или моделирование достаточно сложной, абстрактной или реальной системы не возможны без процесса выдвижения на первый план некой части структуры системы.
Конкретизируя все сказанное на примере технологии гуманитаризации школьного математического образования, т.е. конкретной педагогической системы. С позиций целей исследования основной частью такой педагогической системы будет являться математическое содержание. Ко всей же остальной структуре педагогической системы относятся гуманитарные и составные объекты.
Принцип органичности
Принцип органичности означает, что при разработке технологии гуманитаризации школьного математического образования необходимо достичь органичного взаимодействия между математическими и гуманитарными системами культуры. Гуманитарные объекты должны естественным образом включаться в математическое содержание. Этот принцип должен найти отражение, при создании составных объектов, а также всеми компонентами технологии гуманитаризации.
Технология гуманитаризации
школьного математического образования
| ОСНОВНЫЕ КОМПОНЕНТЫ | ||
| Концептуальный
| Содержательный
| Деятельностный
|
| Программно-методическое обеспечение:
| ||
Глава II «Практическое применение
элементов технологии гуманитаризации»
2.1 Анализ программы
Изучение программного материала по теме «Дробные числа» дает возможность учащимся:
-
овладеть достаточно развитой техникой вычислений с рациональными числами; овладеть навыками устных вычислений;
-
овладеть первоначальными навыками работы с приближенными значениями;
-
усовершенствовать умения решать, в том числе текстовые задачи на дроби, проценты;
-
ознакомить с некоторыми историческими сведениями о возникновении и развитии чисел.
Уровень обязательной подготовки определяется следующими требованиями:
-
знать и правильно употреблять термины, связанные с дробными числами: дробное, обыкновенная дробь, десятичная дробь; уметь переходить от одной формы записи чисел к другой;
-
уметь сравнивать дробные числа;
-
уметь изображать дробные числа на координатной прямой и определять координату точки;
-
уметь выполнять сложение, вычитание, умножение, деление, возведение в квадрат и куб обыкновенные и десятичные дроби; приобрести навыки устных вычислений; уметь находить значение числовых выражений;
-
округлять десятичные дроби;
-
решать основные задачи на дроби и проценты.
На изучение темы «Дробные числа» программой отводится в общем 64 ч в 5 кл. и 58 ч в 6 кл. За это время учащиеся должны овладеть всеми знаниями и умениями, представленными выше. Однако, помимо знаний обязательного материала они могут получить и дополнительный материал, представленный информацией из области других предметов: истории, литературы, географии и др.
2.2 Особенности содержания и структуры курса
Для всего курса характерны опора на здравый смысл и интуицию, развития умения применять математику в реальной жизни, знакомство с математикой как частью общечеловеческой культуры. Содержание курса развивается “по спирали”, что позволяет неоднократно возвращаться к знакомому материалу на новом уровне, формировать системные знания; при этом последовательно реализуется принцип “разделения трудностей”.
В 5-6 классах усилено внимание к арифметике и арифметическим (т.е. логическим) методам решения задач. Существенно повышена роль геометрического материала: здесь представлена наглядная геометрия, направленная на развитие образного мышления, пространственного воображения, изобразительных умений.
Методический аппарат учебников. Учебники включают в себя как объяснительный текст, так и богатую систему упражнений, распределенных по уровню сложности в группы А и Б. В систему упражнений включаются советы, указания, образцы решений, интересные для учащихся формы заданий – задания с выбором ответа, задачи-исследования.
Во всех книгах присутствует рубрика «Для тех, кому интересно» - это обязательный материал, позволяющий расширить и углубить знания учащихся. Каждую главу завершает рубрика «Задания для самопроверки», в которой представлены обязательные результаты обучения.
Рассмотрим и проанализируем содержание и оформление основных учебников используемых в настоящее время в работе учителями школ.
Большинство учителей используют учебники: Нурка Э. П. (А. Е. Тельгмаа), Виленкина ( Чеснокова, Шварцбурга, Жокова).
Выясним основные содержания этих учебников:
| Нурк | Виленкин |
| 5 класс | |
|
|
| 6 класс | |
|
|
Рассмотрим особенности приведенных учебников и сравним их содержание.
Система управлений и заданий:
1. Нурк содержит два уровня:
А – низкий, В – выше, * - нестандартные задания. Присутствуют задания на повторение. В конце учебника – курс повторения по всем темам этого учебника и задачи для любителей математики. Система упражнений разнообразная и разноуровневая.
Также в учебнике есть справочный материал: на обложках формулы площадей прямоугольника и квадрата; объема прямоугольника, параллелограмма, куба; сложение и вычитание обыкновенных дробей; проценты; математический алфавит, таблица простых чисел.
К каждой теме автором подобран исторический материал, даны темы рефератов, указаны источники.
2) Виленкин. Содержит: / - правила, ? – вопросы к упражнениям, К – упражнения для работы в классе, П – повторение, Д – домашние задания, @ - исторический материал, Г – упражнения для правильного говорения, М – нестандартные задания. Есть также ответы на задания. Набор упражнений очень большой.
Присутствует дополнительный материал в виде: латинского алфавита, формул объемов и площадей, и метрических соотношений, таблица простых чисел. Исторический материал.
Т. О. Можно сделать вывод по основам рассмотрим выше: самое удачное оформление у учебников Нурка и Виленкина; набор разноуровневых заданий – Нурк; удобен в работе для родителей – Нурк; теория лучше дана у Нурка и Виленкина.
Исторический материал приведен в достаточном количестве только у Виленкина, но содержится также и у Нурка.
Отдельно хотелось бы рассмотреть содержание учебников Дорофеева, внедряемых в практику с 1995 года. Для всего курса характерны опора на здравый смысл и интуицию, развитие умения применять математику в реальной жизни, знакомство с математикой как частью общественной культуры. Содержание курса развивается «по спирали», что позволяет неоднократно возвращаться к знакомому материалу на новом уровне, формировать системные знание; при этом последовательно реализуется принцип «разделение трудностей».
В 5-6 классах усилено внимание к арифметике и арифметическим методам решения задач. Существенно повышена роль геометрического материала: здесь представлена наглядная геометрия, направленная на развитие образного мышления, пространственного воображения, изобразительных умений.
В учебниках последовательно вводиться новая для нашей школы содержательно-методическая линия «Анализ данных», включающая комбинаторику, элементы теории вероятностей и статистику. Эта линия органично сочетается с традиционными вопросами курса и существенно усиливает его практическое и прикладное звучание.
Принятые при построении курса методические подходы направлены на то, чтобы обеспечить понимание и осознанность при изучении материала, облегчить учащимся запоминание информации, сформировать у них системные знания, помочь овладеть набором разнообразных стратегий решения задач. К ним относятся:
-
приоритет развивающей функции обучения, это меняет акценты в преподавании, явно выдвигает задачу формирования интеллектуальной восприимчивости, гибкости, независимости мышления;
-
внимание к мотивационной стороне обучения, что способствует активизации познавательной деятельности, повышению интереса к изучаемому материалу;
-
организация этапа содержательно-практической деятельности как исходного при введении новых понятий позволяет создать у учащихся запас содержательных представлений, служащих основой для последующей формализации, способствует лучшему пониманию, даёт возможность школьникам открывать новые знания;
-
целенаправленное обучение приёмам и способам рассуждений, обогащающее интеллектуальный багаж школьников и эффективно развивающее их мышление;
-
реализация идеи уровневой дифференциации, что позволяет работать с учащимися разного уровня подготовки и способностей, выстраивать индивидуальные траектории обучения;
-
личностно-ориентированный стиль изложения, который выражается в живом и эмоциональном языке, широком использовании диалога и обращений к ученику, привлечении совместных сюжетов при изложении теории и в задачном материале.
Учебники включают в себя как объяснительный текст, так и богатую систему упражнений, распределённых по уровням сложности в группы А и Б. В систему упражнений включаются советы, указания, образцы решения, интересные для учащихся формы заданий — задания с выбором ответа, задачи-исследования.
Во всех книгах присутствует рубрика «Для тех кому интересно» — это необязательный материал, позволяющий расширить и углубить знания учащихся. Каждую главу завершает рубрика «Задания для самопроверки», в которой представлены обязательные результаты обучения.
Рассмотрев все эти учебники можно сделать вывод, что в работе желательно использовать учебники Виленкина и Дорофеева (возможно их параллельное применение).
2.3 Методика изучения дробных чисел
В практике преподавания основным методом изучения дробных чисел являются поясняющие описания, которые опираются на жизненный опыт и знания учащихся. Поясняющие описания не заменяют определений, понятий, а лишь показывают целесообразность их введения.
Введение дробных чисел в школьном курсе связывается с необходимостью более точного измерения величин, с делением чисел. В связи с этим целесообразно познакомить учащихся с возникновением дробных чисел в процессе практической деятельности человека, а именно в процессе измерения. Краткая историческая справка поможет учащимся лучше овладеть данным материалом. Содержание её может быть примерно следующим.















