kotel (708896), страница 5
Текст из файла (страница 5)
Удаление пара, достигающего в конце работы его в турбине столь низких давлений, значительно облегчается, если превратить его в воду. Причина этого заключается в том, что масса воды при данном давлении занимает значительно меньший объем, чем эта же масса в виде пара. Превращение пара в воду происходит при соответствующем его охлаждении и называется конденсацией пара.
В турбинной установке электростанции для конденсации пара после турбины устанавливается специальный аппарат, называемый конденсатором, а турбину, в которой пар расширяется до столь низкого давления, конденсационной турбиной.
В основе работы ТЭС лежит известный закон сохранения энергии, который гласит: энергия не исчезает и не создается вновь, а может лишь превращаться из одного вида в другой.
Назначение ТЭС состоит в том, чтобы тепловую энергию поступающего топлива преобразовывать в электрическую. Однако преобразовывать всю энергию топлива в электрическую на конденсационной электростанции нельзя, так как значительную часть тепла, полученного от топлива, приходится бесполезно отводить через конденсатор. Решение этой проблемы – теплофикация.
На ТЭЦ устанавливаются специального типа, позволяющие отбирать часть расширяющегося в них пара для подачи его потребителям. Оставшаяся часть пара используется для нагрева горячей воды обычно от 75 до 115
. При таком использовании тепло отработанного в турбине пара не уходит с проточной водой в реку, а используется для целей теплоснабжения.
Примером такой теплоэлектроцентрали является Павлодарская ТЭЦ-1, которая снабжает потребителей не только электроэнергией, но также и теплом в виде пара и горячей воды. Пар направляется на фабрики и заводы, где используется для целей производства. Горячая вода используется для отопления зданий и нужд горячего водоснабжения (бани, ванны, души, бассейны).
-
Выбор принципиальных технических решений
-
Постановка и декомпозиция общей задачи
Система управления современными тепловыми электростанциями автоматизирована и имеет два уровня:
-
Автоматизированная система управления отдельными технологическими процессами (АСУТП);
-
Управление тепловой электростанцией (АСУ ТЭС). К числу устройств автоматики тепловых электростанций относятся технологические защиты, блокировка и сигнализация, регуляторы и системы автоматики.
Технологические защиты энергетических и блоков обеспечивают их отключение при аварийных режимах; падении вакуума турбин; резком отклонении параметров пара от проектных; сбросах нагрузок; отключении тягодутьевых механизмов; прекращении питания котлоагрегатов; прекращении подачи топлива.
Автоматическое регулирование тепловых процессов осуществляется с помощью систем автоматического регулирования.
Главная особенность производства пара состоит в относительно невысокой скорости протекания технологического процесса и его непрерывности. Организация такого способа производства будет более эффективной в случае автоматизации, поскольку процесс будет идти равномерно, сократится численность обслуживающего персонала, удлинится срок службы оборудования, сократится расход сырья, топлива и электроэнергии, увеличится производительность аппаратуры. Также следствием автоматизации производства можно считать облегчение условий труда и снижение себестоимости производства пара.
Автоматизация производства пара заключается в автоматическом контроле и регулировании подачи питательной воды, процесса горения, температуры перегретого пара, водного режима, паропроизводительности котлоагрегатов, разрежение в топке котла путем установки контрольно-измерительных приборов и регулирующих устройств.
-
Котельные установки как объект регулирования
Котельная установка является сложным комплексом машин и механизмов, работающих в едином технологическом потоке (рис.5, Приложение 2).
В объем котельной установки, кроме основного производства, могут входить несколько цехов: подготовки воды, подготовки и транспортировки топлива, теплоснабжения потребителей сетевой водой для отопления и водой для горячего водоснабжения и др.
В каждом из этих цехов находятся агрегаты и двигатели, многие из которых автоматизированы, блокированы между собой или входят в систему АСУ (автоматическую систему управления).
Но все эти вспомогательные цехи и установки либо направлены на создание бесперебойной работы котлоагрегата и турбин ТЭЦ, либо являются устройствами, призванными распределять энергию, вырабатываемую теплосиловой установкой.
Основным энергоемким агрегатом, от которого зависит экономичная работа тепловой станции, остается котельный агрегат. Поэтому особое значение придается системе регулирования теплового процесса котельного агрегата.
Рис. 5 Схема котельного агрегата с основными точками регулирования:
1 – топка котла, 2 – барабан котла, 3 – пароперегреватель, 4 – экономайзер, 5 – турбина, 6 – дымосос, 7 – вентилятор, ОК – отсечный клапан, РОТ – регулирующий орган топлива, РК – регулирующий клапан питательной воды, ИМ – исполнительный механизм, РУ – регулятор уровня, РД – регулятор давления, БРОУ – быстровключающаяся редукционно – охладительная установка, Д – диафрагма, РТ – регулятор тяги, РИВ – регулятор избытка воздуха, КР – корректирующий регулятор, РН – регулятор нагрузки, t – термопара.
Топливо, сжигаемое в топке 1, выделяет определенное количество тепла, которое воспринимается активными поверхностями нагрева котла. Обычно это экранные водонагревательные трубки, которые, спускаясь из барабана котла, опоясывают топочное пространство и создают замкнутый контур циркуляции воды.
Тепло, передаваемое экранным трубам горячими газами, заставляет воду в трубах вскипать, и в а последних образуется пароводяная смесь. Плотность такой смеси меньше плотности воды, поэтому нагретая пароводяная эмульсия подымается вверх по трубам и попадает в барабан котла, где пар отделяется от воды и занимает верхний объем барабана. По опускным необогреваемым трубам, которые внизу котла соединены с обогреваемыми трубами, на место ушедшей в барабан котла эмульсии поступает вода и снова образуется эмульсия, подымающаяся вверх. Таким образом, в котле создается постоянная циркуляция воды.
Образовавшийся пар собирается в барабане котла 2 и через паронагреватель 3 поступает в паровую турбину 5. продукты сгорания топлива (в виде топочных газов) отсасываются дымососом 6.
На своем пути топочные газы омывают трубки пароперегревателя 3 и водяного экономайзера 4.
Вторичное использование тепла дымовых газов повышает коэффициент полезного действия, так как тепло используется для повышения энергетических показателей пара, а подогретая питательная вода, поступая в барабан, не охлаждает находящуюся там воду. Подогретая вода после водяного экономайзера поступает через питательный клапан РК в барабан, восполняя потери воды с отбираемым паром.
Топливо в топку (в данном случае горючий газ) поступает через отсечный клапан ОК и регулирующий орган РОТ. Нормальный режим горения топлива обеспечивается подачей в топку воздуха от вентилятора 7.
Для того чтобы поддерживать экономичный и устойчивый режим котельного агрегата, надо, прежде всего, выбрать параметр, который лег бы в основу регулирования подачи топлива в топку. В индивидуальных котельных агрегатах, работающих каждый на свою турбину, таким параметром является давление пара в барабане котла. Действительно, ели в топке сгорает столько топлива, сколько требуется для образования пара, покрывающего его расход, то давление в барабане котла будет неизменным. Иначе говоря, подвод тепла к котельному агрегату от сгорающего топлива, с учетом коэффициента полезного действия, должен соответствовать уходу тепла с отбираемым паром.
Если количество пара, поступающего в топку, превышает расход тепла с уходящим паром, то парообразование в котле будет протекать более интенсивно и давление в барабане увеличится. Если количество пара тепла, отбираемое с паром, превышает тепло, подаваемое с топливом, давление в барабане котла будет падать.
Количество тепла, подаваемого в топку, может изменяться по причине изменения состава и калорийности топлива. Но, если считать, что состав подаваемого топлива не меняется, что соответствует действительности для газового и жидкого топлива, то изменение подачи топлива в топку может быть вызвано только одной причиной – изменением количества отбираемого пара. Поэтому процесс регулирования подачи топлива называется регулированием нагрузки котла, а регулятор, ведущий этот процесс, называется регулятором нагрузки.
Регулятор РН получает импульс давления в барабане котла и передает команду на исполнительный механизм ИМ, который перемещает регулирующий орган топлива РОТ. Регулятор не просто передает команду на регулирующий орган, он её обрабатывает в соответствии с законами регулирования. Дело в том, что процесс образования пара в котле не сразу изменяется количество выработанного пара. Причиной этого является то, что сам процесс образования пара происходит во времени, кроме того, часть тепла тратится на нагревание топочных масс котла.
Представим себе в развернутом виде переходной процесс после изменения отбора пара или, иначе говоря, возмущения системы регулирования. Пусть в результате увеличения отбора пара давление в барабане упало. Для того, чтобы отдать команду на восстановление давления, регулятор должен учесть, на какую величину упало давление, а зачастую, и с какой скоростью оно падает. Когда подача топлива в топку увеличится, часть увеличенной подачи тепла уйдет на нагрев топочной кладки, деталей топочного устройства, металла экранных трубок и т.д. Следовательно, для того, чтобы ускорить восстановление давления в барабане котла, регулятор должен подать команду, учитывающую этот повышенный расход тепла.
Вместе с тем, когда процесс установится в новом режиме, все части котла прогреваются, и эта добавочная порция тепла, если её не снять, приведет к повышенной выработке пара, а, следовательно, к увеличению давления выше нормы.
Все это должно быть учтено регулятором: после начала перестановки регулирующего органа подача топлива увеличится; давление начнет восстанавливаться; по мере приближения давления к норме регулятор должен замедлять движение регулирующего органа и прекратить его перестановку, когда давление достигнет нормы.
Однако в силу вышесказанных причин, а также ошибок регулятора, инерционности исполнительного механизма и регулирующего органа, процесс редко на этом заканчивается. Чаще всего регулирующий орган к моменту восстановления давления занимает положение, соответствующее повышенной, против требуемого, подачи топлива. Поэтому давление в котле будет расти и процесс регулирования будет повторяться с обратным знаком.
Пройдут несколько колебаний всей системы, прежде чем процесс установится. Такие колебания являются очень нежелательными для котельного агрегата, так как, кроме того, что такой режим является очень неэкономичным, он приводит к тепловым перегрузкам и деформациям всех частей котла. Правильный выбор регулятора и его точная настройка заметно уменьшают переходный процесс и улучшают режим работы котла.
Для обеспечения процесса горения топлива в топку должно быть подано определенное количество воздуха, кислород которого необходим для полного сгорания топлива. Избыток подаваемого воздуха вызовет повышенный унос тепла с топочными газами и приведет к переохлаждению топочного пространства, а недостаточная подача воздуха – к неполному сгоранию топлива. Поэтому соответствующая расходу топлива подача воздуха является второй задачей, которую должен обеспечивать режим автоматического регулирования.
В топку подается небольшой избыток воздуха по сравнению с тем, который нужен для полного сжигания топлива. Этот избыток определяется коэффициентом избытка воздуха, который устанавливается при тепловых испытаниях котлоагрегата. Задача автоматического регулирования заключается в обеспечении подачи воздуха в строгом соответствии с этим коэффициентом. Если характеристика системы «топливо - регулирующий орган» линейна, т.е. перемещение регулирующего органа прямо пропорционально количеству топлива, подаваемого в топку, то сигнал о количестве подаваемого топлива можно снять с датчика дистанционной передачи исполнительного механизма регулирующего органа топлива. Этот сигнал воспринимается регулятором избытка воздуха РИВ, который отдает команду исполнительному механизму ИМ, служащему приводом направляющего аппарата вентилятора 7.
Топочные газы должны быть полностью удалены. Полного удаления продуктов сгорания можно достичь обеспечением определенной производительности дымососа 6. Для того чтобы топочные газы не выбивались из топки наружу, необходимо поддерживать определенное разряжение в топке котла. Вместе с тем, увеличение этого разряжения приводит к повышенному подсосу воздуха через не плотности в стенках котлоагрегата. В котле попадает не подогретый воздух. Повышаются потери с отходящими газами, так как возрастает скорость дымовых газов, нерационально увеличивается расход электроэнергии на привод дымососа. Все это ведет к уменьшению коэффициента полезного действия котла.
Импульс разряжения снимается в верхней части топочной камеры в связи с тем, что в нижних частях топки могут быть различного рода подсосы. Поэтому, поддерживая разряжение в верхней части топки, можно быть уверенным, что в других частях топки разряжение может быть только больше, но не меньше. Импульс разряжения передается на регулятор РТ, который через исполнительный механизм поворачивает направляющий аппарат дымососа.