ref-18530 (708788), страница 2
Текст из файла (страница 2)
Выбираем этот редуктор, т.к. его надо устанавливать на площадке, устанавливаемой на консоли крана. Он обладает небольшой массой и сильно не нагрузит металлоконструкцию крана. Проверяем соответствие редуктора передаточному числу.
ip * p – ip/ip * 100% ≤ 4% [3;46] (2.25)
где ipp – расчётное передаточное число редуктора
ip – передаточное число редуктора
47.8 – 49/49 * 100% = 2.45% ≤ 4%
Условие выполняется. Редуктор подходит.
Рис. 2.4 Редуктор.
Таблица 2.4
Параметры редуктора.
A | B | B1 | H | H0 | h | L | L1 | S | S1 | S2 | S3 | k |
80 | 230 | 116 | 315 | 115 | 22 | 255 | 295 | 215 | 186 | 150 | 224 | 45 |
-
Определяем пусковой момент
Мпуск = Мп min + Мп max /2 [3;143] (2.26)
где Мп min – ½ Мmax = ½ * 3.5 = 1.75 кН*м
Мпуск = 1.76 + 3.5/2 = 2.6 кН*м
-
Определяем наименьший момент двигателя
Мном = 0.75 * Pдв /nдв [3;144] (2.27)
где Pдв – мощность двигателя, кВт
nдв – частота вращения двигателя, об/мин
Мном = 0.75 * 1.1/750 = 1.47 кН*м
-
Определяем статический крутящий момент на тормозном валу
Мст = Q * Dб * ηo/η * m * io [3;456] (2.28)
где Q – грузоподъёмность, кг
Dб – диаметр барабана,
ηо – КПД редуктора,
m – кратность полиспаста,
io – передаточное число редуктора.
Мст = 2500 * 0.186 * 0.92/n * η * 49 = 2.18 кг * м
-
Определяем тормозной момент
Мт = к * Мст [3;148] (2.29)
где к – коэффициент запаса торможения к = 1.75
Мт = 1.75 * 2.18 = 3.82 кг * м
Выбираем тормоз ТКТ с короткоходовыми электромагнитами ТКТ – 100 Мт = 40 Н*м
длина рычага = 100 мм,
длина колодки = 70 мм,
длина тормозного пути 100 мм
Рис. 2.5 Тормоз колодочный
Таблица 2.5
Параметры тормоза колодочного
А | Е | F | H | K | M | N | O | R | S | T | δ | h | δ1 | d | a | c |
369 | 130 | 233 | 250 | 40 | 65 | 46 | 37 | 325 | 110 | 8x8 | 4 | 100 | 6 | 13 | 15 | 120 |
-
Расчёт траверсы крюковой подвески и выбор крюка
2.1.3.1 Выбираем крюк грузоподъёмностью 5 т.
Подходит для механизмов с машинным приводом, все краны с подвеской 72 м. (ГОСТ 6627 – 53)
Рис. 2.6 Крюк.
Таблица 2.6
Размеры крюка, мм
а | о | d | d1 | do | l | l1 | l2 | M | R3 | R3 | R5 | R6 | R7 | R8 |
85 | 65 | 55 | 50 | 48 | 120 | 50 | 70 | 42 | 110 | 28 | 85 | 95 | 12 | 2 |
2.1.3.2 Производим проверку траверсы на прочность
Рис 2.7 а) траверса, б) серьга.
Проверяем прочность траверсы по максимальным напряжениям изгиба в сечении А – А
σи = Gгр * l * в/4(В – d2) * h2 ≤ [σи] [4;243] (2.30)
где Gгр – грузоподъёмность вместе с весом крюка, т
Gгр = Ст + gк [4;244] (2.31)
gк – вес крана с подвеской
Gгр = 2.5 * 0.072 = 2.572 т
l – расстояние между центрами щёчек, м
в – ширина щёчки, м
В – ширина траверсы, м
h – высота траверсы, м
d2 – диаметр оси цапфы, м
[σи] – допускаемое напряжение изгиба [σи] = 80 МПа
σи = 2.572 * 0.09 * 0.046/4(0.08 – 0.05) * 0.052 = 13.55 МПа < 80 МПа
Проверяем цапфы на изгиб
σи = Gгр * δ * 2 + δ1/η * 0.1 * dy3 ≤ [σи] [4;245] (2.32)
δ – толщина щёчки, м
dy – диаметр цапфы, м
[σи] = 70 МПа
σи = 2.572 * 0.008 * 2 + 0.003/2 * 0.1 * 0.033 = 48 МПа ≤ 70 МПа
Поверхность соприкосновения цапфы и нижней щёчки проверяют по допускаемому давлению.
g = Gгр/dy * δ * η ≤ [g]
g – удельное давление,
[g] – допускаемое удельное давление [g] = 30 МПа
g = 9.572/η * 0.03 * 0.08 = 25.4 МПа < 30 МПа
Проверяется на растяжение в вертикальном и горизонтальном сечениях, которые ослаблены отверстиями для цапфы.
В горизонтальной плоскости.
σр = σгр/2(в - dy)δ ≤ [σр] [4;250] (2.34)
[σр] - допускаемое напряжение на растяжение [σр] =70 МПа
σр = 2.572/2 * (0.046 – 0.03 0 * 0.008 = 14.5 МПа ≤ 70МПа
В вертикальной плоскости.
σ’ = g * 2R2/R2 – (dy/2)2 ≤ [σ’] [4;268] (2.35)
где R – радиус, м
[σ’] – допускаемое напряжение на растяжение
σ’ = 25.4 * 2 * 0.0252/0.0252 – (0.03/2)2 = 18.5 МПа ≤ 70МПа
Крюковая подвеска выдержит все нагрузки на неё.
-
РАСЧЁТ МЕХАНИЗМА КРАНА
Механизм поворота крана состоит из открытой цилиндрической зубчатой передачи, колесо закреплено на колонне крана, которая получает вращение через коническую передачу. Вращение осуществляется вручную при помощи рукоятки.
Выбираем рукоятку с плечом 0.4 кг и длинной ручкой 0.3 м. Суммарное усилие рабочего, применяемое к рукоятке
Р = р * z * φ [4;143] (2.36)
Р – усилие, развиваемое рабочим = 200 Н
z – число рабочих = 2
φ – коэффициент, учитывающий неодновременность приложений усилий рабочим = 0.08
Р = 0.8 * 2 * 200 = 320 Н
Средняя скорость движения при ручном приводе для рукояток = 0.6 м/сек
-
Расчёт открытой цилиндрической зубчатой передачи
2.2.1.1 В качестве материала шестерни применяем сталь 45, улучшенную, с пределом прочности σв = 800 МПа.
2.2.1.2 Принимаем допускаемые напряжения
Касательное допускаемое напряжение [σи] = 418 МПа
Изгибное допускаемое напряжение [σf] = 198.8 МПа
2.2.1.3 Определяем межосевое расстояние
аω = 4950 (i + 1) [6;89] (2.37)
Мкр – крутящий момент на валу колеса
ψа – коэффициент ширины венца колеса = 0.23
кнв – коэффициент неравномерности нагрузки по длине зуба = 1
Принимаем одностандартное значение аω = 450 Н*м
-
Принимаем модуль зацепления
м = 2Миз * Мм * 103/d2 * в2 * [τF] [6;89] (2.38)
d2 – делительный диаметр колеса
d2 = 2da * i/(i + 1) [6;90] (2.39)
d2 = 2 * 450 6.3/(6.3 + 1) = 776 мм
в2 – ширина венца колеса
в2 = ψа * аω [6;91] (2.40)
в2 = 0.23 * 450 = 104 мм
м = 2 * 3048 * 103 * 6.8/776 * 104 * 198.8 = 5.5 мм
Принимаем м = 6мм
-
Определяем суммарное число зубьев шестерни и колеса
ZΣ = 2аω/М [6;93] (2.41)
ZΣ = 2 * 450/6 = 150
-
Определяем число зубьев шестерни
Z1 = ZΣ/(i + 1) [6;94] (2.42)
Z1 = 150/6.3 + 1 = 20
-
Определяем число зубьев колеса
Z2 = ZΣ – Z1 [6;94] (2.43)
Z2 = 150 – 20 = 130
-
Определяем фактическое передаточное отношение
iф = Z2/Z1 [6;96] (2.44)
iф = 130/20 = 6.5
При этом iф не должно превышать 4%
Δi = (iф – i)/i * 100% [6;96] (2.45)
Δi = (6.5 – 6.3)/6.3 * 100% = 3.2%
Норма выполняется
-
Определить основные размеры передачи
2.2.2.1 Делительные диаметры
d1 = m * z1
d2 = m * z2 [6;98] (2.46)
d1 = 6 * 20 = 120 мм
d2 = 6 * 130 = 780 мм
2.2.2.2 Определяем диаметр вершин зубьев
da1 = d1 + 2m [6;99] (2.47)
da2 = d2 + 2m [6;100] (2.48)
da1 = 120 + 2 * 6 = 132 мм
da2 = 780 + 2 * 6 = 792 мм
2.2.2.3 Определяем ширину венца
в2 = ψа * аω [6;102] (2.49)
в1 = в2 + (2÷4) [6;103] (2.50)
в2 = 0.23 * 450 = 104 мм
Принимаем 80 мм
в1 = 80 + 4 = 84 мм
-
РАСЧЁТ МЕХАНИЗМА ПЕРЕДВИЖЕНИЯ КРАНОВОЙ ТЕЛЕЖКИ
Для передвижения крановой тележки выбираем схему передвижения с гибким стальным типовым канатом.
-
Определяем полное сопротивление перемещению
W = Wтр + Wв + Wy [3;132] (2.51)
где Wтр – сопротивление от трения ходовых колёс
Wв – сопротивление от ветровой нагрузки
Wy – сопротивление сил трения от уклона
Wтр = Gгр + Gт/Dк * (2k – fd)kp [3;134] (2.52)