109269 (708008), страница 3

Файл №708008 109269 (Автоматические устройства) 3 страница109269 (708008) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Решение этих дифференциальных уравнений однотипно:

x=x(0) е ; y=y(0) е (30)

По условию задания, к концу интервала времени 2 рассогласования X, Y должны составлять величину  от начальных рассогласований.

Из (30) имеем : , откуда Т*= .

Указания к выбору начальных условий. Если систему уравнений (29) и кинематических уравнений движения звеньев привести к форме Коши, то она будет иметь вид:

M=VMx(XM,t); M=VMy(YM,t); (31)

i=iz(i, Vmx, Vmy, t) (i=1,2,3)

Эти уравнения манипулятора,являющегося системой с двумя степенями свободы, записаны в избыточном наборе пяти переменных XM, YM, 1, 2, 3. Отсюда следует, что из начальных значений этих переменных независимо могут задаваться только два. В таблице 1 независимыми задаются величины 1(0), 2(0), значения 3(0) указанные в таблице,вычислены по 1(0), 2(0) для рассматриеваемой конструктивной схемы манипулятора. Значения XM(0), YM(0) следует находить по заданным 1(0), 2(0), 3(0).

Указания к решению задачи. Дифференциальные уравнения движения манипулятора с заданными начальными условиями интегрируются на интервале времени  0 2  с шагом t. При решении задачи рекомендуется использовать конечноразностную схему Эйлера.

Контроль решения. Построенные по результатам счета графики не должны иметь разрывов. При t=2 рассогласование между точками М и К должно быть величиной порядка  от начального. Результаты вычисления на ЭВМ для момента времени t=(N+1)t угловых скоростей звеньев и скорости точки С должны совпадать с результатами графоаналитического решения для этого момента времени. Расхождения не должны превышать 5%.

Пример выполнения задания .

(вариант 31, n=1, N=2)

1. Постановка задачи. Управление манипулятором (рис.4) должно обеспечить за время 2 сближение захвата М с движущейся деталью К. Деталь движется прямолинейно с постоянной скоростью Vк в указанном на рисунке направлении. Начальное положение манипулятора задано углами поворота звеньев 1(0), 2(0), 3(0). К моменту времени t=2 требуется относительная точность  совмещения точек М и К. Управление манипулятором осуществляется по линейной комбинации рассогласований и их производных.

Дано: Vk=0,304м/c; =4,35рад; DA=r1=0,953м; BC=r3=0,457м; BM=2r3; AB=r2=0,847м; 1(0)=1.63рад; 2(0)=3,37рад; 3(0)=2,87рад; Xk(0)=-2,16м; Yk=1,18м; =0,01; 2=1,37c; t=0,057c.

Требуется: 1. Составить уравнения управляемого движения точки М, уравнения углового движения звеньев манипулятора и уравнения для скорости точки С. 2. Выбрать параметры управления, обеспечивающего сближение точек М и К с заданной точностью. 3. Проинтегрировать с помощью ЭВМ уравнения движения на интервале времени  0, 2 . 4. Построить траектории сближения точек М и К и графики 1(t), 1z(t), Vcx(t). 5. Для момента времени t=(N+1)t=0,456c провести графоаналитическое решение задачи и сравнить с результатами счета.

2. Составление уравнений движения. Уравнения движения детали К имеют вид:

Xk=Xk(0)+Vkxt; Vkx=Vkcos= - 0,108м/c; (32)

Yk=Yk(0)+Vkyt; Vky=Vksin= - 0,284м/c.

Предполагая,что координаты захвата М известны в процессе движения,можно вычислить рассогласования координат точек К и М.

X=Xk - XM; Y=Yk - YM (33)

Учитывая,что управление манипулятором осуществляется по линейной комбинации рассогласовании и их производных

ux=X + T* X; uy=Y + T* Y (34)

При управлении с большими коэффициентами усиления k с погрешностью порядка 1/k выполняются соотношения:

ux=0, uy=0. (35)

Подставляя (35) в выражения (32), (33), (34) и приводя полученные уравнения к форме Коши получаем:

=VMx; VMx=Vkx + Xk(0) + Vkxt - XM / T*;

=VMy; VMy=Vky + Yk(0) + Vkyt - YM/T*. (36)

Угловое движение звеньев манипулятора и скорость точки С однозначно определяется движением точки М и внешними связями, налагаемыми в точках D и С. Составляются выражения для проекций скоростей точек С и М.

В соответствии с графом С В М запишем:

VMx=Vcx - 3zr3sin(3 - ) - 3z2r3sin3;

Vmy=3zr3cos(3 - ) + 3z2r3cos3; (37)

В соответствии с графом D A B C

Vcx= - 1zr1sin1 - 2zr2sin2 - 3zr3sin(3 + ); (38)

Vcy= 1zr1cos1 + 2zr2cos2 - 3zr3cos(3 + )=0.

Из уравнений (37) , (38) получают:

3z=VMy/r3(2cos3+sin3);

Vcx=VMx+3zr3(2sin3 - cos3); (39)

1z= ;

2z= .

Уравнения (39) дополним дифференциальными соотношениями

; ; (40)

3. Определение параметра управления. Из (34) и (35) получим уравнение в рассогласованиях:

T* x+x=0; T* y+y=0.

Решение этих уравнений имеет вид:

x=x(0) e , y=y(0) e ,

По условию, при t=2 должно выполняться соотношение

 = =0,01. Отсюда

Т* = =0,297 c.

4. Решение задачи и обработка результатов. Система уравнений (36), (39), (40) интегрируется с помощью ЭВМ на интервале 0; 1,37 с использованием конечноразностной схемы Эйлера. Шаг интегрирования t=0,057c.

Начальные условия по переменным 1, 2, 3 (рис.4) приведены в исходных данных, а по переменным XM, YM вычисляются по формулам :

XM=r1 cos1+r2 cos2+2r3 cos3 (41)

YM=r1 sin1+r2 sin2+2r3 sin3

Подставив в (41) числовые значения ri, i(0), получают XM(0), YM(0). Последующие шаги интегрирования осуществляются с использованием зависимостей (22), с учетом, что

=XM(k)+VMx(k)t;

=YM(k)+VMy(k)t, (42)

с использованием зависимостей (41)

Результаты счета по двум вариантам сравниваются.

Программа счета составляется на любом языке программирования,результаты оформляются в виде таблицы. По результатам решения строятся графики 1(t), 1z(t), Vcx(t) и траектории сближения точек М и К, которые не должны иметь разрывов,а координаты точек М и К в момент времени  должны быть достаточно близки.

Графоаналитическая проверка результатов счета производится аналогично проверке в первой задаче.

III. Динамика механизма с двумя степенями свободы.

Описание задания.

Манипулятор с двумя степенями свободы (рис.1) переносит точечный груз М массой m за время 3 под действием двигателей управления, расположенных в шарнирах B и D из точки d в точку е с заданной скоростью

VMx=0, VMy=V3 sinkt (43)

Элементы конструкции считаются абсолютно жесткими и безинерционными. Силы трения в шарнирах и ползунах отсутствуют. Катки относительно опорных поверхностей не проскальзывают.

Исходные данные определяются формулами (43), (44) и табл.1

r1=r1T+0,01n; ri=riT+0,01N(i=2,3,4);

V3= ; 3=0,24N; k= . (44)

i(0)=iT+0,01N , (i=1,2,3) m=10+N

Требуется исследовать с помощью ЭВМ движения манипулятора. Перечень пунктов исследования приведен в примере.

Указания к составлению уравнений кинетостатики для моментов и сил управления.

Система освобождается от связей и разделяется на отдельные звенья или группы звеньев. Вводятся реакции связей. Прикладываются активные силы: внешняя сила - вес точки М - и внутренние моменты управления MBz, MDz или сила управления Fcx, Fcy в вариантах 2, 3, 7, 9, 10, 12, 14, 17, 18, 20, 21, 23, 24, 26, 27, 28. При освобождении связей в точках В и D к смежным звеньям прикладываются моменты противоположных знаков. Для определенности положительный момент прилагается со стороны звена с большим индексом к звену c меньшим индексом. По принципу Даламбера к точке М условно прикладывается сила инерции = m м. Она определяется для заданного движения (43) точки М .

Уравнения МBz, MDz или Fcx, Fcy получаются из уравнений кинетостатики для механической системы, включающей точку М и уравнений статики для механических систем, образованных из безинерционных звеньев. Из этих уравнений определяются

MBz=MBz(1, 2, 3, t); MDz=MDz(1, 2, 3, t); (45)

Fcx=Fcx(1, 2, 3, t); Fcy=Fcy(1, 2, 3, t).

В общем случае определяются моменты управления МBz и МDz, силы управления Fcz и Fcy определяются по указанию преподавателя при уточнении задания.

Указания к составлению кинематических уравнений движения.

Выражения для определения неизвестных угловых скоростей 1z, 2z, 3z, 4z и проекции скорости точки С Vcz или Vcy по известной скорости точки М получаются по аналогии с предыдущими заданиями или заимствованы полностью из этих заданий. Из этих уравнений:

1z=1z(1, 2, 3, t); 2z=2z(1, 2, 3, t);

3z=3z(1, 2, 3, t); 4z=4z(1, 2, 3, t); (46)

Vcx=Vcx(1, 2, 3, t); Vcy=Vcy(1, 2, 3, t).

Уравнения (46) позволяют определить угловые скорости звеньев и проекции скорости точки С для фиксированного момента времени при заданных в этот момент значениях 1, 2, 3. Изменение 1, 2, 3,а следовательно, и 1z, 2z, 3z, 4z, Vcx, Vcy во времени определяется,если дополнить систему (46) уравнениями:

=1z, = 2z, =3z, =4z, =Vcx; =Vcy, (47)

Характеристики

Тип файла
Документ
Размер
715,5 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6665
Авторов
на СтудИзбе
292
Средний доход
с одного платного файла
Обучение Подробнее