Рис.2. Участок Дидоны с канавой
Доход Д с огороженного участка, ограниченного кривой x(t), равен
(П.1)
где gn[x(t)] = {x(t), если
; (x+a )/2, если
} .Следует максимизировать значение дохода Д (интеграла (П.1)) при наличии ограничений
(П.2)
. (П.3)
Далее Кларк использует методы негладкого анализа для решения модифицированной задачи Дидоны. Применение этих методов ограничивается негладкими интегрантами и абсолютно непрерывными экстремалями.
Для частичной иллюстрации возможностей предложенного нами метода решения задач с разрывным интегрантом будем полагать, что участок Дидоны параллельно береговой линии пересекает канава шириной b -a . Один берег канавы проходит по линии x(t)=a ., а другой - по линии x(t)=b . Участок канавы, ограниченный берегами и веревкой (рис.2), никакого дохода не приносит, и интегрант выглядит так:
(П.4)
Веревка ограничивает канаву, пересекая ее, но разорвать веревку Дидона не может, поэтому изопериметрическое условие (П.3) остается в силе. Требуется максимизировать доход с участка, расположенного по берегам канавы, ограниченного береговой линией и веревкой.
Представим g[x(t)] с помощью единичной функции включения (1.2) в виде
В уравнение Эйлера простейшей вариационной задачи (2.6) входят производные интегранта по x и по
. Вычислим эту производную
Производя сокращения и учитывая свойства d -функции [7], находим
или
(П.5)
С учетом изопериметрического условия (П.3), получим дифференциальное уравнение для экстремали
(П.6)
где l - неопределенный пока множитель Лагранжа [7].
Уравнение (П.6) при
и ограничениях (П.2) имеет интегралом окружность
(П.7)
где C = ¦ (l 2 /a2-1)1/2, симметрично расположенную относительно оси Оx (рис.2). Выразим длину веревки Дидоны через параметры задачи a , b , g и неизвестный коэффициент l .
В горизонтальной полосе 0 и центр соответствующей окружности располагается ниже оси Оt (иначе интегральные дуги
окажутся вне вертикальной полосы -1 дуги получим
(П.8)
При x>b и
при отыскании максимума функционала (П.1) в случае g >1 (или g <1) центр окружности, содержащей интегральную дугу
, будет расположен выше (или ниже) оси Оt. Для длины дуги
получим
(П.9)
В полосе a и интегральная линия имеет вид отрезков прямой
, соединяющей концы дуг
и
с концами дуги
. При разных значениях параметра g может быть разная ориентировка этих отрезков. В частности, они могут быть параллельны оси Оy (
)или наклонены. Длина отрезка
определяется выражением
или
Заметим, что при a =b и
лишь при g =1, т.е. требования "стыковки" или даже "сопряжения" дуг
и
, наложенные в [3] при
, не вытекают из условия задачи, несмотря на неразрывность веревки.
Окончательно получим
или (П.10)
При a = b получаем
При a = b и a = 1 получается длина дуги в классической задаче [12] Дидоны
Или
(П.11)
3. Вариационная задача поиска оптимального оператора
Кроме приведенной в разделе 2 постановки вариационной задачи, сформулируем задачу поиска ядра оптимального оператора F i , действующего на заданные функции Si, и доставляющего экстремум функционалу с разрывным интегрантом F. Такие задачи могут, например встречаться при нахождении распределения плотности заряда в частице.
Пусть существует функционал I с разрывным интегрантом F
(3.1)
В случае конечных пределов интегрирования в (3.1) функционал I всегда можно выразить через интеграл с бесконечными пределами с помощью функции (1.2) включения H(x). В формуле (3.1) символами F i(x) обозначены линейные интегральные операторы
(3.2)
с искомым ядром K(x,t), действующим на заданные функции
,
.
Частные решение
Установим интересное свойство множества экстремалей. Для этого представим ядро в виде произведения
(3.3)
где
,
- выбранная из некоторого множества произвольная функция, на которую умножаются входные процессы Si (t);
,
- разностное ядро, которое требуется найти из условия экстремума функционала I. Подставив (3.3) в (3.2), получим
(3.4)
Используем свойство свертки и приведем оператор (3.4) к виду
(3.5)
Частная оптимизационная задача для функционала (3.1), зависящего от линейного интегрального оператора с ядром (3.3), свелась к задаче для функционала (3.1), зависящего от интегральных операторов (3.5) с разностными ядрами Ki (x,t)=Si (x-t)r (x-t). Решение этой задачи получено в разделе 2. Частным необходимым условием экстремума функционала I на основе раздела 2 является уравнение
(3.6)
Поскольку функции Si (x-t) заданы из условий задачи, а функция r (x-t) выбирается произвольно, то каждой из выбранных r (x-t) соответствует оптимальная h(t), т.е. даже при представлении ядра K(x,t) в виде произведения (3.3) единственного решения сформулированной задачи не существует.
Никаких ограничений на непрерывность ядер K(x,t) при выводе частных необходимых условий экстремума не накладывалось, поэтому и функции r (x-t), и функции h(t) могут быть разрывными или d -функцией и ее производными. Следовательно, на основании теоремы [13] о мощности множества функций действительного переменного можно сделать вывод о том, что множества частных и, тем более, общих необходимых условий экстремума имеют мощность больше мощности континуума.
В связи с тем, что задача (3.1), (3.2) счетного множества решений не имеет, решением в данном случае можно назвать конструктивное описание подмножества
функций K(x,t), доставляющих экстремум функционалу I, причем мощность множества K больше мощности континуума.
Общая задача
Рассмотрим общую задачу (3.1), (3.2). Будем ее решать как вариационную. Для этого введем однопараметрическое семейство кривых - функций двух переменных K(x,t)=K(x,t) + a d K(x,t), где d K(x,t) - произвольная функция двух переменных, a - малый параметр K(x,t) вместо K(x,t) в операторы (3.2), операторы (3.2) в функционал (3.1), дифференцируя (3.1) по параметру a , получим вариацию d I
(3.7)
Полагая, что к вариации (3.7) применима теорема Фубини, изменим порядок интегрирования и суммирования и положим вариацию dI равной нулю
(3.8)
Применяя к вариации (3.8) основную лемму вариационного исчисления в формулировке Л.Янга [7], получим необходимое условие экстремума функционала (3.1), зависящего от оператора (3.2),
(3.9)
Если интегрант функционала (3.1) не является линейным, частные производные интегранта
всегда содержат сам оператор (3.2), а уравнение (3.9) является нелинейным двумерным интегральным уравнением, когда искомая функция K(x,t) двух независимых переменных входит под знак интеграла. Свойства уравнений типа (3.9) пока исследованы мало. Только если функционал I - квадратичный, уравнение (3.9) - линейное двумерное интегральное уравнение, некоторые свойства которых сведены в монографии [11].
Список литературы
[1] Фейнмановские лекции по физике, Том 6, М.: Мир, 1977.
[2] КашиновВ.В. Физическая мысль России, N 1/2, (1999), с.127.
[3] КларкФ. Оптимизация и негладкий анализ: Пер. с англ. / Под ред. В.И.Благодатских, М.: Наука, 1988.
[4] СмоляноваМ.О. Непрерывно дифференцируемая разрывная функция на пространстве D // Известия РАН. Серия математическая. Том 59.5, (1995), с.197-202.
[5] БатухтинВ.Д., МайбородаЛ.А. Разрывные экстремальные задачи, СПб.: Гиппократ, 1995.
[6] АнтосикП., МикусинскийЯ., СикорскийР. Теория обобщенных функций (Секвенциальный подход). - М.: Мир, 1976.
[7] ЯнгЛ. Лекции по вариационному исчислению и оптимальному управлению. - М.: Мир, 1974.
[8] КолмогоровА.Н., ФоминС.В. Элементы теории функций и функционального анализа. - М.: Наука, 1981.
[9] МышкисА.Д. Лекции по высшей математике. - М.: Наука, 1973. с.186-188.
[10] КашиновВ.В. Необходимые условия оптимальности в некоторых задачах управления и фильтрации // Кибернетика. 6, 1972, с.148-149.
[11] ПахолковГ.А., КашиновВ.В., ПономаренкоБ.В. Вариационный метод синтеза сигналов и фильтров. - М.: Радио и связь, 1981.
[12] КрасновМ.Л., МакаренкоГ.И., КиселевА.И. Вариационное исчисление. - М.: Наука, 1973.
[13] МакаровИ.П. Дополнительные главы математического анализа. - М.: Просвещение, 1968.