108969 (707827), страница 2
Текст из файла (страница 2)
Kn(T)/Kn(0) = [Is (T)/Is (0)]n(2n+1) , (26)
где n – порядок константы. Таким образом, мы приходим к универсальной зависимости K1≈ I3s и K2≈ I10s. Pезультат (26) получается в приближении теории молекулярного поля . Микроскопические трактовки этой проблемы даны в работах Ван - флека и Канамори.
В основе всех расчетов по микроскопической теории магнитной анизотропии лежит учет магнитного взаимодействия между спиновыми
и орбитальными магнитными моментами электронов, принимающих участие в ферромагнетизме. В общем случае оператор магнитной энергии складывается из трех членов.
Hмагн.=U1+U2+U3 (27)
где U1 — оператор, соответствующий движению электронов относительно ионов решетки,— спин-орбитальная энергия; U2 — оператор магнитной энергии, возникающей вследствие относительного движения самих электронов, —орбитальная энергия; U3 — оператор энергии магнитного взаимодействия спиновых магнитных моментов электронов — спиновая энергия (в первом приближении имеет вид дипольного взаимодействия).
Эффект орбитального взаимодействия U1 и U2 проявляющийся в случае изолированных атомов в образовании тонкой структуры спектральных линий приводит к появлению “внутренних магнитных полей” порядка 105 э. С другой стороны, “эквивалентное магнитное поле” анизотропии ферромагнетиков, определяемое величиной поля, при котором достигается насыщение в монокристалле вдоль труднейших направлений намагничивания, оказывается порядка 102 э и лишь в редких случаях (Со, пирротин) достигает 103—104 э. Объяснение этого несоответствия заключается в том, что в отличие от атомов, где орбитальные моменты отличны от нуля (за исключением s-состоянии), в ферромагнитных кристаллах (например, в d-металлах и сплавах), как показывают измерения гиромагнитного эффекта, средний орбитальный магнитный момент по кристаллу почти всегда практически равен нулю. Поэтому в первом приближении эффект спин-орбитальных энергий U1 и U2 также равен нулю. Отличный от нуля эффект получается лишь во втором и более высоких приближениях.
Что же касается спиновой части магнитного взаимодействия U3, которая хотя и дает отличный от нуля эффект в первом приближении, но тем не менее не обеспечивает наблюдаемый на опыте порядок величины эффективных “полей” благодаря своей малости .
Несмотря на отсутствие законченной квантовой трактовки магнитного
взаимодействия в ферромагнетиках, в этой области имеются известные
успехи. Так, например, удалось объяснить правильный порядок величины констант магнитной анизотропии. В частности, без всяких дополнительных соображений из теории следует, что в кубических кристаллах (Fe, Ni) константы анизотропии должны быть меньше по абсолютной величине, чем в случае гексагональных кристаллов (Со, пирротин). Это вытекает из свойств симметрии кубических кристаллов, в которых первое приближение для дипольной энергии U3 и второе приближение для орбитальных энергий U1 и U2 не приводит к зависимости свободной энергии кристалла от ориентации его намагниченности относительно кристаллографических осей. Для получения этой зависимости надо рассматривать следующие приближения, в то время как в гексагональных решетках анизотропия получается и в первом приближении для U3, и во втором для U1 и U2.
Остановимся несколько подробнее на микромеханизме явления естественной кристаллографической магнитной анизотропии. Поскольку
в создании самопроизвольной намагниченности ферро- и антиферромагнетиков основную роль играют электронные спины, то микроскопическая энергия, ответственная за магнитную анизотропию, должна зависеть от состояния этих спинов в кристалле, а также отражать симметрию распределения спиновой и зарядовой (орбитальной) плотности в кристалле. Наиболее простым является механизм магнитного дипольного взаимодействия спинов.
К сожалению, однако, учет лишь дипольного межэлектронного взаимодействия не может, как правило, объяснить наблюдаемую на опыте величину энергии магнитной анизотропии.
Другой из упомянутых выше механизмов заключается в связи между
спином и орбитальным движением электронов [например, описываемой
членами U1 и U2 гамильтониана (27)].
Киттель дает следующее наглядное объяснение физического механизма магнитной анизотропии из-за спин-орбитальной связи.
В основу своего объяснения они кладут общепризнанное положение, что, само появление этой анизотропии обусловлено совместным действием спин-орбитальной связи, частичного замораживания орбитальных моментов неоднородными кристаллическими полями и орбитальным обменным взаимодействием соседних атомов. Таким образом, самопроизвольная намагниченность кристалла “чувствует” ионную решетку через орбитальное движение магнитных электронов. Спины, участвующие в намагниченности, взаимодействуют с орбитальным движением с помощью спин-орбитальной связи, а орбитальное движение связано с решеткой
полем лигандов.
Микроскопическая энергия, возникающая благодаря этому механизму, может быть в свою очередь двух типов:
1) спин-орбитальная связь, которая зависит от спиновых состояний
двух или более ионов-носителей магнитного момента (парная модель
магнитной анизотропии);
2) связь, зависящая от спинового состояния только отдельных ионов
(одноионная модель магнитной анизотропии). Последний механизм оказывается наиболее близким к реальной ситуации, которая имеет место в неметаллических антиферро - и ферримагнетиках, в которых магнитноактивные ионы находятся в окружении магнитно-нейтральных анионов. Под действием поля лигандов, симметрия которого определяется типом кристалла, происходит расщепление уровней магнитного иона. В результате основному состоянию в зависимости от структуры кристаллической решетки будут соответствовать различные типы уровней, что приводит к магнитной анизотропии кристалла с магнитным порядком.
§ 3. Магнитострикция при техническом намагничивании
Известно, что в процессе технического намагничивания происходит смещение границ доменов и вращение вектора Is. Рассмотрим, как эти процессы влияют на изменение длины кристалла с положительной константой магнитной анизотропии K1.
Пусть внешнее магнитное поле параллельно оси [110] и в исходном состоянии объемы Vi доменов, намагниченных вдоль шести направлений легкого намагничивания, равновелики: V0100= V0I00 =V00I0 =V0001 =V00I 0 =V000I =1/6 V, где V – объем кристалла.
а) Смещение 180° доменных границ. При этом домены, намагниченные вдоль направлений [100] и_{010], поглощаются доменами,намагниченными в направлениях [100] и [010]. Изменения длины при смещении 180° доменных границ не происходит.
После того как смещение этих границ заканчивается, объемы
доменов равны
V0I00= V00I0 =0
При этом средняя намагниченность кристалла
I= 2/3 (2) - ½ Is
б) Смещение 90° границ. При этом домены, намагниченные
вдоль направлений [100] и [010], поглощают домены, намагниченные в направлениях [001] и [001]. В конце этого процесса объемы доменов равны V100=V010=V/2,V001=V00I=0 и средняя намагниченность кристалла
I = (2) - ½ Is
Отноносительное изменение длины, вызванное смещением 90° границ, будет при этом равно
∆l/l=1/3[(l/l)[001] – (l/l)[100]]=1/3[(l/l)[001] – (l/l)[010]] = (1/3)(3/4) 100 = ¼ 100
(28)
гле
(l/l)[001] (1 = 2 = 0, 3 = 1 ),
(l/l)[100] (2 = 3 = 0, 1 = 1 ),
(l/l)[010] (1 = 3 = 0, 2 = 1 ),
Отметим, что формула (28) определяет лишь конечное изменение длины, соответствующее намагниченности I= (2) - ½ Is, при которой заканчивается процесс смещения 90° границ при условии, что вклад в намагниченность от процессов вращения еще пренебрежимо мал.
в) Вращение. Если процессы смещения 180 и 90 границ заканчиваются в слабых магнитных полях, при которых вклад в намагниченность от процессов вращения пренебрежимо мал, то можно считать, что при дальнейшем росте магнитного поля вращение векторов намагниченности доменов к оси [110] происходит в плоскости (001) .Пусть - угол между направлением намагниченности доменов и полем. Тогда намагниченность вдоль поля Н равна I=Is cos . Относительное удлинение вдоль оси [110] будет
( l/l)[110] = - 1/2100 + 3/4100 (21+22) + 3/211112 ,
где 1 = cos(/4-), 2 = sin(/4-) , откуда
( l/l)[110] = ¼ 100 + ¾ 111 (2cos2 -1) ¼ 100 + ¾ 111 (2(I/Is)2 -1).
Метод измерений и описание установки
На исследуемые в работе ферромагнитные образцы, наклеены проволочные тензодатчики, изготовленные из тонкой константановой проволоки. Константан имеет очень малый температурный коэффициент омического сопротивления и пригоден для выполнения прецизионных измерений. В результате явление магнитострикции при намагничивании образца изменяются и линейные размеры тензодатчика, что приводит к изменению его омического сопротивления. По величине изменения омического сопротивления можно судить о величине магнитострикции. Коэффициент пропорциональности изменения омического сопротивления тензодатчика называют коэффициентом тензочуствительности.
На рис.2 приведена электрическая схема установки для измерения магнитострикции. Схема собрана в виде стенда с клеммами для подключения внешних приборов, а именно: источника постоянного напряжения 10В. и микровольтметра постоянного тока. Через клеммы также подключается тензодатчик исследуемого образца и источник постоянного магнитного поля (соленоид). Измерительный проволочный тензодатчик ИТД является одним из плеч измерительного моста, во второе плечо которого включен компенсационный тензодатчик КТД, наклеенный на стальную полоску, находящуюся вне магнитного поля. Два других плеча измерительного моста образованы прецизионными резисторами R1 и R2 . Потенциометр R3 служит для грубой компенсации моста, а реоход R4 для точной компенсации. К диагонали измерительного моста через подвижный контакт реохода и клеммы x3,x4 “мкВ”
Подключается внешний микровольтметр. Резистор R5 задает ток питания датчиков. На стенде размещен также переменный резистор R6 для регулировки тока в соленоиде и, соответственно, амплитуды магнитного поля в нем. Конструктивно-технологические особенности выполнения измерений магнитострикции.
Измерение магнитострикции является прецизионным процессом, в силу малости измеряемой величены. Даже у никеля, имеющего одну из самых больших величин магнитострикции, она составляет всего 30x10-6. Поэтому при питании тензодатчиков током порядка 5мА, разбаланс моста составляет в зависимости от величены от 1 до 10 мкВ, что соответствует изменению сопротивления тензодатчика 10-4-10-3 Ом. Для сравнения: величина термоЭДС контакта медь-конктантан – 30 мкВ/град С, а переходные сопротивления контактов могут достигать величин десятых долей Ома, т.е. ,по крайней мере, два мешающих фактора существенно превосходят измеряемую величину. Основные способы отстройки от мешающих факторов использованные в стенде:
-размещение контактов индуцирующих термоЭДС в соседних плечах моста для компенсации ее;
-использование скользящего контакта реохода (контакта с большим переходным сопротивлением) в высокоомной потнциалометрической цепи;