29814-1 (707646), страница 2
Текст из файла (страница 2)
Элементы схемы замещения могут быть рассчитаны по следующим эмпирическим формулам [4]:
где - индуктивность вывода базы;
- индуктивность вывода эмиттера;
- предельное значение напряжения
;
- предельное значение постоянного тока коллектора.
При расчетах по эквивалентной схеме, приведенной на рисунке 3.3.2.1, вместо используют параметр
- коэффициент усиления транзистора по мощности в режиме двухстороннего согласования [5], равный
=
(3.3.2.1)
где - частота, на которой коэффициент усиления транзистора по мощности в режиме двухстороннего согласования равен единице;
- текущая частота.
3.4 Расчет цепей термостабилизации
Существует несколько вариантов схем термостабилизации. Их использование зависит от мощности каскада и от того, насколько жёсткие требования к термостабильности. В данной работе рассмотрены три схемы термостабилизации: пассивная коллекторная, активная коллекторная и эмиттерная.
3.4.1. Эммитерная термостабилизация
Транзисторный каскад с эммитерной термостабилизацией приведен на рисунке 3.4.1.1
Рис. 3.4.1.1 Усилительный каскад с эммитерной стабилизацией
Расчет элементов схемы эммитерной термостабилизации производится по формулам в [6].
Напряжение на эммитерном сопротивлении обычно выбирают:
Тогда сопротивление Rэ будет равно:
Напряжение источника питания:
Расчет базового делителя:
Ток делителя:
Мощность, рассеиваемая на RЭ:
Пассивная коллекторная стабилизация.
Данный вид термостабилизации (схема представлена на рисунке 3.4) используется на малых мощностях и менее эффективен, чем две другие, потому что напряжение отрицательной обратной связи, регулирующее ток через транзистор подаётся на базу через базовый делитель.
Транзисторный каскад с пассивной коллекторной термостабилизацией приведен на рисунке 3.4.2.1
Рис. 3.4.2.1 Каскад с пассивной коллекторной стабилизацией
Подробный расчет элементов схемы приведен в [6].
Для того, чтобы пассивная коллекторная термостабилизация была эффективной необходимо, чтобы напряжение URк лежало в пределах:
Тогда сопротивление RК и источник питания будут равны:
Рассчитаем RБ:
Тогда рассеиваемая мощность каскада:
что почти в 2 раза больше рассеиваемой мощности каскада с эммитерной термостабилизацией.
Активная коллекторная стабилизация
Активная коллекторная термостабилизация используется в мощных каскадах и является очень эффективной, её схема представлена на рисунке 3.4.3. Её описание и расчёт можно найти в [7].
Рис. 3.4.3 Каскад с активной коллекторной стабилизацией
Для того, чтобы активная коллекторная стабилизация была эффективной необходимо, чтобы на резисторе R4 выделялось напряжение:
Тогда сопротивление должно быть равно:
Рассчитаем рабочую точку второго транзистора, обеспечивающего стабилизированный режим работы каскада:
Тогда источник питания:
Рассчитаем элементы схемы активной коллекторной стабилизации по формулам в [7]:
Рассеиваемая мощность каскада:
Таким образом наиболее экономичным по энергетическим параметрам является каскад с активной коллекторной стабилизацией, но т.к. разрабатываемый усилитель антенной решетки маломощный, то в каскадах усилителя целесообразней применить эммитерную термостабилизацию, обладающую достаточно хорошими параметрами стабилизации рабочей точки транзистора.
Расчет элементов высокочастотной коррекции
Для того, чтобы усилитель антенной решетки был согласован по входу и выходу, имел линейную амплитудно-частотную характеристику, а параметры усилителя не изменялись во времени и при изменении температуры окружающей среды, необходимо испоьзовать схему высокочастотной коррекции. Лучше всего для данного усилителя подходит схема с комбинированной обратной связью [7].
Схема каскада по переменному току приведена на рисунке 3.5.1
Рисунок 3.5.1 - Схема каскада с комбинированной ООС
Расчет схемы каскада с комбинированной отрицательной обратной связью подробно описан в [7].
Достоинством схемы является то, что при условиях:
и
(3.5.1)
схема оказывается согласованной по входу и выходу с КСВН не более 1,3 в диапазоне частот, где выполняется условие YВ0,7. Поэтому практически отсутствует взаимное влияние каскадов друг на друга при их каскадировании.
При выполнении условия (3.5.1), коэффициент усиления каскада в области верхних частот описывается выражением:
(3.5.2)
где:
;
.
Из (3.5.1), (3.5.2) не трудно получить, что при заданном значении , выбранным с запасом в 20%, для того, чтобы в случае ухудшения, в силу каких-либо причин, параметров отдельных элементов коэффициент передачи усилителя не опускался ниже заданного уровня, определённого техническим заданием:
на один каскад.
Тогда общий коэффициент передачи усилителя будет равен:
Тогда коэффициенты:
При заданном значении Yв на один каскад, частота fв каскада равна:
(3.5.3)
Нагружающие ООС уменьшают максимальную амплитуду выходного сигнала каскада в котором они используются на величину
. (3.5.4)
При выборе и
из (3.5.1), ощущаемое сопротивление нагрузки транзистора каскада с комбинированной ООС равно
и его напряжение и ток в рабочей точке, также как и для каскада без ООС, могут быть рассчитаны по формулам [7]:
,
,
где - максимальная допустимая мощность, рассеиваемая на коллекторе.
В этом случае каскада равно:
С учетом наличия сопротивления насыщения следует рассчитывать по формуле
(3.5.5)
Из формулы (3.5.5) следует, что напряжение, которое может отдать транзистор с учетом потерь на резисторах обратной связи и с четом наличия сопротивления насыщения, несколько больше напряжения, которое он должен выдать на выходе по заданию. Это говорит о том, что полученный в результате расчета усилитель антенной решетки обладает лучшими характеристиками, чем по заданию.
4. Расчет предоконечного и входного каскадов
Расчет входного и предоконечного каскада производится абсолютно аналогично расчету конечного каскада, т.к. все каскады согласованы по входу и по выходу за счет применения комбинированной отрицательной обратной связи и режимы работы транзисторов одинаковы.
5. Расчет разделительных и блокировочных конденсаторов
На рисунке 5.1 приведена принципиальная схема усилителя. Рассчитаем номиналы элементов обозначенных на схеме. Расчёт производится в соответствии с методикой описанной в [1]:
Рисунок 5.1 Принципиальная схема антенного усилителя.
Произведем расчет разделительных и блокировочных емкостей.
Так как ёмкости, стоящие в эмиттерных цепях, а также разделительные ёмкости вносят искажения в области нижних частот, то их расчёт следует производить, руководствуясь допустимым коэффициентом частотных искажений. В данной работе этот коэффициент составляет 1.5дБ. Общее количество разделительных конденсаторов 4, тогда на один разделительный конденсатор приходится искажений 1.5/4 = 0,375 дБ.
Тогда:
где R1 и R2 – это входное и выходное сопротивления каскадов усилителя и R1 = R2 =50 Ом, т.к. каскады согласованы по входу и по выходу.
,
где S0 – это крутизна транзистора, рассчитанная в п. 3.3.1;
RЭ – это сопротивление термостабилизации, рассчитанное в п. 3.4.1;
YН = 0,94, т.к. количество Ср равно 3.
Дроссель в коллекторной цепи каскадов ставится для того, чтобы выход транзистора по переменному току не был заземлен через источник питания. Величина дросселя выбирается исходя из условия:
Тогда:
Конденсаторы, стоящие в цепях обратной связи: C1, C2, C3 выбираются из условия:
Тогда:
Заключение
В результате расчета получился усилитель со следующими характеристиками:
1. Рабочая полоса частот: 100-1196 МГц
2. Линейные искажения
в области нижних частот не более 1.5 дБ
в области верхних частот не более 1.5 дБ
3. Коэффициент усиления 19,7дБ
4. Амплитуда выходного напряжения Uвых=0.25 В
5. Питание однополярное, Eп=7 В
Усилитель рассчитан на нагрузку Rн=50 Ом и согласован по входу и по выходу.
Усилитель имеет запас по усилению 4,7дБ, выходному напряжению и по верхней частоте.
Список использованной литературы:
1. Красько А.С., Проектирование усилительных устройств, методические указания. Томск: ТУСУР, 2000г., 29 с.
2. Аронов В.Л., Баюков А.В. и др. Полупроводниковые приборы: Транзи сторы. Справочник/Под общ. Ред. Горюнова Н.Н. – 2-е издание, пере-
работанное – М.: Энергоатомиздат, 1985-904с., илл.
3. Мамонкин И.Г. Усилительные устройства: учебное пособие для вузов.