63860 (695476), страница 2
Текст из файла (страница 2)
Центральний момент першого порядку центрованої випадкової величини завжди дорівнює нулеві за означенням:
. (20)
Центральний момент другого порядку
(21)
Із (21) випливає, що другий центральний момент можна визначити через початкові моменти таким чином:
(22)
Цей момент характеризує розсіювання можливих значень випадкової величини відносно її середнього значення і називається дисперсією. Стосовно електричних сигналів дисперсія характеризує потужність відхилень випадкової величини від середнього значення, яка виділяється на навантаженні в 1 Ом.
Часто використовують таке позначення дисперсії:
. (23)
Величину , що дорівнює додатному значенню кореня квадратного з центрального моменту другого порядку, називають середнім квадратичним відхиленням випадкової величини
.
Розмірність збігається із розмірністю випадкової величини
і тому її можна використовувати для оцінювання ширини кривої густини розподілу ймовірностей: чим більше значення
, тим ширшим є графік функції
.
На основі ансамблю з реалізацій випадкового процесу статистичне визначення дисперсії проводимо за формулою:
(24)
Визначимо перший та другий центральні моменти для рівномірного та експоненційного законів (табл.1 та 2).
Рівномірний закон. Оскільки математичне сподівання для цього випадку дорівнює нулеві, то обидва центральні моменти збігаються з початковими моментами, тобто
,
Експоненційний закон. Перший центральний момент за означенням дорівнює нулеві. Другий центральний момент (дисперсія), згідно з (22), визначаємо за формулою:
.
При розв'язуванні багатьох практичних завдань доводиться додавати, віднімати та перемножувати випадкові сигнали. При цьому числові характеристики результуючих сигналів достатньо просто визначають через числові характеристики первинних сигналів.
Наприклад, якщо та
є первинними незалежними сигналам,
– постійна величина, то справедливі такі співвідношення:
(25)
(26)
(27)
(28)
(29а)
. (29б)
Подані співвідношення можна узагальнити на випадок більшої кількості випадкових сигналів. У загальному випадку числові характеристики одновимірних розподілів залежать від часу. Це зумовлюється часовою залежністю функції розподілу та одновимірної густини розподілу
. Тому в цьому разі числові характеристики замість чисел стають функціями часу і їх називають моментними функціями. На рис. 5a зображена реалізація випадкового процесу, перша моментна функція якого (середні значення) не змінюється в часі і дорівнює нулеві, а центральна моментна функція другого порядку (дисперсія) з часом зростає. Рисунок 5б ілюструє варіант реалізації випадкового процесу з незмінною дисперсією та змінним у часі середнім значенням.
Рисунок 5 – Варіанти реалізацій випадкового процесу із змінними в часі числовими характеристиками.