62713 (695144)

Файл №695144 62713 (Поляризационная структура излученного сигнала, принятого сигнала. Когерентное объединение (накопление) сигнала в поляризационных каналах)62713 (695144)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

кафедра ЭТТ

РЕФЕРАТ на тему:

«Поляризационная структура излученного сигнала, принятого сигнала. Когерентное объединение (накопление) сигнала в поляризационных каналах »

МИНСК, 2008

Поляризационная структура излученного сигнала

Векторное электромагнитное поле, в отличие от скалярного акустического поля, имеет поляризационную структуру. Это означает, что в фиксированной точке пространства конец вектора напряженнос­ти электрического (или магнитного ) поля в плоскости поляриза­ции, перпендикулярной к направлению распространения электромагнит­ной волны, совершает вращательное движение, описывая за каждый период высокочастотного колебания траекторию, в общем случае эллиптическую, называемую годографом (рис. 1).

Эллиптически поляризованная волна (наиболее общий случай) может быть разложена на две ортогонально поляризованные составляю­щие, каждая из которых характеризуется своей амплитудой и фазой:

.

Каждая пара ортогонально поляризованных векторов и единичной длины , т.е. ортонормированных векторов, образует так называемый поляризационный базис. Поляризационных базисов может быть бесконечное множество (рис. 2). Они отлича­ются эллиптичностью (как отношением малого и большого диаметров эллипсов) и углом ориентации. Однако наиболее широкое распростра­нение получили два поляризационных базиса: линейный и круговой (рис. 3). Линейный базис составляют два пульсирующих вектора с горизонтальное и вертикальной поляризацией единичной длины (рис.3,а). Круговой базис составляют два вращающихся вектора с круговой поляризацией (правой и левой) единичной длины (рис.3,6).

Комплексные амплитуды и , характеризующие амплитуду и фазу ортогонально поляризованных составляющих вектора , есть проекции вектора на направления ортов и соответственно, которые определяются скалярными произведениями:

,

.

К омплексные амплитуды

и можно считать комплексными координатами вектора в базисе [ ].

Р ис. 1. Годограф вектора напряженности электрического поля

эллиптически поляризованной волны.

Р ис.2. Эллиптический поляризационный базис [

].

Рис. 3. Линейный (а) и круговой (б) поляризационные базисы [ ].

Меняя амплитуду и фазу, т.е. управляя амплитудой и фазой и ортогонально поляризованных колебаний (волн) с линейной поляризацией, получаемых, например, с помощью горизонтально и вертикально расположенных вибраторов, или с круговой поляризацией, получаемых, например, с помощью спиральных излучателей с правозаходной илевозаходной спиралью, можно получить необходимую поляризационную структуру зондирующего (излученного) сигнала и управ­лять ею. Процесс формирования некоторой эллиптически поляризо­ванной волны с помощью ортогонально поляризованных волн с круго­вой поляризацией показан на рис.4,а, а с линейной поляриза­цией - на рис.4,6. Здесь в моменты времени с интервалом в четверть периода высокочастотного колебания пока­заны ортогонально поляризованные составляющие с учетом их комп­лексных амплитуд и . Складывая векторы напряженности элек­трического поля, соответствующие ортогонально поляризованным ком­понентам для одних и тех же моментов времени, получаем результи­рующий вектор напряженности электрического поля последователь­но в моменты времени , т.е. поляризационную структуру излучаемого сигнала (годограф вектора ).

Поляризационная структура принятого сигнала

При анализе поляризационной структуры принятого сигнала (от­раженного сигнала, мешающих излучений и метающих отражений) следует учитывать два явления: деполяризацию и декорреляцию поляризацион­ной структуры.

Под деполяризацией понимается изменение поляризационной струк­туры отраженного (рассеянного сигнала), т.е. изменение эллиптич­ности и ориентации годографа результирующего вектора напряженности электрического поля . Преобразование поляризации вызывается процессами обратного вторичного излучения объекта под действием наведенных на его поверхности токов проводимости (для проводников) или токов смещения (для диэлектриков). Поляризационные свойства объекта отражения (рассеяния) зависят от электрических свойств его поверхности (диэлектрической и магнитной проницаемости и про­водимости), формы,относительных размеров, ориентации относительно направления прихода облучающей волны. Поляризационные свойства объекта наблюдения характеризуются так называемой поляризационной матрицей р ассеяния

.

Рис. 4. Результирующая эллептически поляризованная волна, сформированная из составляющих с круговой (а) и линейной (б) поляризацией.

представляющей собой совокупность четырех комплексных коэффициен­тов отражения для двух ортогонально поляризованных составляющих рассеянного поля (первый индекс коэффициента) при двух ортогонально поляризованных составляющих облучающей волны (второй индекс коэф­фициента) в некотором поляризационном базисе [ ].

Преобразование поляризационного состояния волны при отражении (рассеянии) может быть представлено:

- в сокращенной матричной форме

,

- в развернутой матричной форме

.

- в алгебраической форме

,

,

где - комплексные координаты вектора отраженной и падающей волны в базисе [ ].

Поскольку возможно бесконечное множество различных поляризационных базисов [ ], существует бесконечное множество образов и , а также бесконечное множество поляризационных матриц рассеяния одного объекта наблюдения. Однако для любого объекта существует некоторый поляризационный базис , в котором матрица рассеяния приобретает диагональную форму

,

когда коэффициенты отражения для перекрестных компонент равны нулю . Поляризационный базис, в котором матрица рассеяния имеет диагональную форму, называется собственным базисом объекта наблюдения (цели). Поляризации волн, совпадающих с ортами собственного базиса, называются собственными поляризациями объекта наблюдения (цели).

Рассмотрим несколько примеров поляризационных матриц рассеяния.

Пример 1. Поляризационная матрица рассеяния вибратора (рис. 2.10.5.) в линейном базисе (с горизонтальной и вертикальной поляризацией ортов):

,

где - максимальное значение коэффициента рассеяния (отра­жения) вибратора при облучении его линейно поляризованной волной, ректор поля которой параллелен оси вибратора.

Пример 2. Поляризационная матрица рассеяния сферы в любом базисе:

.

Пример 3. Поляризационная матрица рассеяния вибратора (рис. 5) в наклоненном линейном базисе, один из ортов которого параллелен оси вибратора, т.е. в собственном поляризационном ба­зисе:

.

Таким образом, вибратор является в общем случае объектом рассеяния, изменяющим поляризационную структуру облучающей волны. Объекты рассеяния радиоволн, обладающие деполяризующими свойствами, назы­ваются анизотропными в поляризационном смысле. Таких объектов -подавляющее большинство. Сфера является объектом рассеяния, не из­меняющим поляризационную структуру облучающей волны. Такие объек­ты называются изотропными в поляризационном смысле. Изотропными являются любые осесимметричные объекты, если их ось симметрии сов­падает с направлением на систему. Для изотропных объектов . Следует обратить внимание на некоторую условность понятия изотроп­ного в поляризационном смысле объекта наблюдения. Эта условность касается направления вращения вектора поля. Сохранение направления вращения вектора поля при отражении как необходимое условие изо­тропности объекта наблюдения, предполагает наблюдение обеих волн (падающей и отраженной в обратном направлении) по нормали к фронту каждой волны.

Р ис. 2.10.5. Вибратор


Рис. 6. Поворот базиса в плоскости поляризации

Однако в большинстве случаев предполагается наблюдение обеих волн с какой-то одной стороны (со стороны РЛС или объекта). При этом направление вращения вектора поля отражен­ной волны меняется на противоположное по сравнению с падающей волной. Эта условность, конечно, не может изменить представления об изотропности (в поляризационном смысле) объекта наблюдения.

Теперь обратимся ко второму явлений при отражении электромаг­нитной волны - декорреляции ее поляризационной структуры. Прежде всего отметим, что отраженная волна является линейным преобразова­нием падающей волны, причем свойства этого линейного преобразования определяются поляризованной матрицей рассеяния:

.

Данное обстоятельство свидетельствует о том, что четыре ком­поненты отраженного сигнала, соответствующие двум взаимно ортогональным поляризациям на прием при двух взаимно ортогональных поляризациях на излучение

,

,

,

,

являются сильно коррелированными, т.е., функционально линейно за­висимыми, если соответствующие комплексные амплитуды взаимно орто­гональных по поляризации составляющих падающего поля и являются сильно коррелированными, а также если объект наблюдения (цель) в поляризационном смысле является стабильным, т.е. пара­метры его поляризационной матрицы рассеяния не изменяются (не флуктуируют) случайным образом, а если и изменяются, то "дружно". Последнее характерно для целей (объектов наблюдения) с жесткой конструкцией, у которых положение в пространствеодних отража­телей, определяющих компоненту с одной поляризацией, зависит от расположения других отражателей, определяющих компоненту с ортого­нальной поляризацией.

Напротив, если объект наблюдения имеет нежесткую или "мягкую" конструкцию, например, совокупность пространственно распределен­ных элементарных отражателей, когда положение в пространстве одних отражателей не зависит от расположения других и эти отражатели являются анизотропными в поляризационном смысле, то приведенные выше четыре компоненты рассеянного поля оказы­ваются некоррелированными, а рассеянная волна хаотически поляризо­ванной (неполяризованной). Такая ситуация характерна для мешающих отражений от объемно или поверхностно распределенных отражателей, обладающих свойством поляризационной анизотропности.

В случае поляризационно изотропных отражателей, обладающих свойством осевой симметрии по направлению на РЛС, две компоненты рассеянного поля и принципиально отсутствуют, поскольку , а компоненты и рассеянного поля с учетом равенства диагональных элементов матрицы рассеяния будут сильно коррелированными, если сильно коррелированными явля­ются комплексные амплитуды падающего поля и . Эта си­туация характерна для объемно распределенных гидрометеоров (дождь, снег, туман, град, пыль), отражатели которых имеют осесимметричную (как правило, сферическую) форму.

Характеристики

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее