62578 (695095)

Файл №695095 62578 (Линейные блоковые коды)62578 (695095)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

кафедра РЭС

реферат на тему:

«Линейные блоковые коды»

МИНСК, 2009

Линейным блоковым (n,k) - кодом называется множество N последовательностей длины n над GF(q), называемых кодовыми словами, которое характеризуется тем, что сумма двух кодовых слов является кодовым словом, а произведение любого кодового слова на элемент поля также является кодовым словом.

Обычно N=qk , где k - некоторое целое число. Если q=2, линейные коды называются групповыми, так как кодовые слова образуют математическую структуру, называемую группой. При формирование этого кода линейной операцией является суммирование по mod2.


Способы задания линейных кодов

1. Перечислением кодовых слов, т.е. составлении списка всех кодовых слов кода.

Пример. В таблице 1 представлены все кодовые слова (5,3) - кода (ai - информационные, а bi - проверочные символы).

        1. Таблица 1

a1

a2

a3

b1

b2

1

0

0

1

1

0

2

0

1

0

1

1

3

0

1

1

0

1

4

1

0

0

0

1

5

1

0

1

1

1

6

1

1

0

1

0

7

1

1

1

0

0

8

0

0

0

0

0

2. Системой проверочных уравнений, определяющих правила формирования проверочных символов по известным информационным:

где

j - номер проверочного символа;

i - номер информационного символа;

hij - коэффициенты, принимающие значения 0 или 1 в соответствии с правилами формирования конкретных групповых кодов.

Пример. Для кода (5,3) проверочные уравнения имеют вид:

b1= a2 + a3;

b2= a1 + a2.

3. Матричное, основанное на построении порождающей и проверочной матриц.

Векторное пространство Vn над GF(2) включает в себя 2n векторов (n-последовательностей), а подпространством его является множество из 2k кодовых слов длины n, которое однозначно определяется его базисом, состоящим из k линейно независимых векторов. Поэтому линейный (n,k) - код полностью определяется набором из k кодовых слов, принадлежащих этому коду. Набор из k кодовых слов, соответствующих базису, обычно представляется в виде матрицы, которая называется порождающей.

Пример. (5,3) - код, который был представлен в таблице 1, может быть задан матрицей

Остальные кодовые слова получаются сложением строк матриц в различных сочетаниях.

Общее количество различных вариантов порождающих матрицу определяется выражением

Для исключения неоднозначности в записи G(n,k) вводят понятие о канонической или систематической форме матрицы, которая имеет вид

где

Ik - единичная матрица, содержащая информационные символы;

Rk,r - прямоугольная матрица, составленная из проверочных символов.

Пример. Порождающая матрица в систематическом виде для (5,3) - кода

Порождающая матрица G(n,k) в систематическом виде может быть получена из любой другой матрицы посредством элементарных операций над строками (перестановкой двух произвольных строк, заменой произвольной строки на сумму ее самой и ряда других) и дальнейшей перестановкой столбцов.

Проверочная матрица в систематическом виде имеет вид

где Ir - единичная матрица; - прямоугольная матрица в транспонированном виде матрицы Rk,r из порождающей матрицы.

Пример. Проверочная матрица (5,3) - кода


Основные свойства линейных кодов

1. Произведение любого кодового слова на транспонированную проверочную матрицу дает нулевой вектор размерности (n-k)

Пример. для кода (5,3)

2. Произведение некоторого кодового слова , т.е. с ошибкой, на транспонированную проверочную матрицу называется синдромом и обозначается Si(x)

3. Между порождающей и проверочной матрицами в систематическом виде существует однозначное соответствие, а именно:

4. Кодовое расстояние d0 (n,k) - кода равно минимальному числу линейно зависимых столбцов проверочной матрицы

Пример.

для кода (5,3):

для кода (5,2):

5. Произведение информационного слова на порождающую матрицу дает кодовое слово кода

Пример. для кода (5,3)

6. Два кода называются эквивалентными, если их порождающие матрицы отличаются перестановкой координат, т.е. порождающие матрицы получаются одна за другой перестановкой столбцов и элементарных операций над строками.

7. Кодовое расстояние любого линейного (n,k) - кода удовлетворяет неравенству (граница Сингтона). Линейный (n,k) - код, удовлетворяющий равенству , называется кодом с максимальным расстоянием.


Стандартное расположение группового кода

Стандартное расположение группового кода представляет разложение множества всех возможных n-элементных слов, представляющих собой группу, на смежные классы по подгруппе из 2k кодовых слов, составляющих (n,k)-код (см. таблицу 2).

        1. Таблица 2





Образующие или лидеры смежных классов выбираются таким образом, чтобы в их состав вошли наиболее вероятные образцы ошибок в кодовом слове, т.е. образцы ошибок с наименьшим весом.

Пример. Код (5,3) имеет матрицы

и

а стандартное расположение имеет вид,

00000

10111

01101

11010

00001

10110

01100

11011

00010

10101

01111

11000

00100

10011

01001

11110

01000

11111

00101

10010

10000

00111

11101

01010

00011

10100

01110

11001

10001

00110

11100

01011

Этот код имеет d0=3. Он гарантирует исправление одиночных ошибок, конфигурация которых дана в первом столбце.

Процедура исправления ошибок следующая. Принятое кодовое слово анализируют и определяют, в каком столбце оно находится, а затем в качестве исправленного кодового слова берут слово, находящееся в верхней строке.

Однако, если длина кода большая и таблица стандартного расположения также значительная, пользоваться таким алгоритмом неудобно. Поэтому при декодировании используют таблицу синдромов (декодирования), представляющую собой список образцов ошибок (см. первый столбец стандартного расположения) и список соответствующих синдромов, которые однозначно характеризуют каждый смежный класс.

Коды Хэмминга

Кодом Хэмминга называется (n,k)-код, проверочная матрица которого имеет r = n-k строк и 2r-1 столбцов, причем столбцами являются все различные ненулевые последовательности.

Пример. Для (7,4)-кода Хэмминга

или

Проверочная матрица любого кода Хэмминга всегда содержит минимум три линейно зависимых столбца, поэтому кодовое расстояние кода равно трем.

Если столбцы проверочной матрицы представляют упорядоченную запись десятичных чисел, т.е. 1,2,3... в двоичной форме, то вычисленный синдром

Характеристики

Тип файла
Документ
Размер
875,87 Kb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7026
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее