62015 (694732), страница 2

Файл №694732 62015 (Применение метода ветвей и границ для задач календарного планирования) 2 страница62015 (694732) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Получим Zmax = 10,5 ,при X6* = (3; 1,5; 1,5; 0; 0; 0,5; 2,5).

Так какZ(X6*) = 10,5 < Z0 = 12, то задача исключается из списка.

Итак, список задач исчерпан и оптимальным целочисленным решением исходной задачи будет X* = Х4* = (4; 0; 2; 2; 0; 0), а оптимум линейной функции Zmax = 12

З амечание 1. Нетрудно видеть, что каждая последующая задача, составляемая в процессе применения метода ветвей и границ, отличается от предыдущей лишь одним неравенством — ограничением. Поэтому при решении каждой последующей задачи нет смысла решать ее симплексным методом с самого начала (с I шага). А целесообразнее начать решение с последнего шага (итерации) предыдущей задачи, из системы ограничений которой исключить "старые" (одно или два) уравнения — ограничения и ввести в эту систему "новые" уравнения — ограничения.

3.Применение метода ветвей и границ для задач календарного планирования

Метод ветвей и границ является универсальным методом решения комбинаторных задач дискретного программирования. Сложность практического применения метода заключается в трудностях нахождения способа ветвления множества на подмножества и вычисления соответствующих оценок, которые зависят от специфики конкретной задачи.

Рассмотрим применение разновидности метода ветвей и границ— метода «последовательного конструирования и анализа вариантов» для решения задачи календарного планирования трех станков.

Заданы п деталей di (i = 1, 2, ..., n), последовательно обрабатываемых на трех станках R1, R2, R3, причем технологические маршруты всех деталей одинаковы. Обозначим ai ,bi ,ciдлительность обработки деталей di на первом, втором и третьем станках соответственно.

Определить такую очередность запуска деталей в обработку, при которой минимизируется суммарное время завершения всех работ Tц.

Можно показать, что в задаче трех станков очередность выполнения первых, вторых и третьих операций в оптимальном решении может быть одинаковой (для четырех станков это свойство уже не выполняется). Поэтому достаточно определить очередность запуска только на одном станке (например, третьем).

Обозначим k = (i1, i2 , ..., ik) — некоторую последовательность очередности запуска длиной k (1  k п) и A (k), В (k), С (k) — время окончания обработки последовательности деталей k на первом, втором и третьем станках соответственно.

Необходимо найти такую последовательность опт, что

С(опт) = min С ().

Покажем, как можно рекуррентно вычислять A (k), В (k), С (k). Пусть k+1 = (k ,ik+i), т. е. последовательность деталей k+1 получена из деталей k с добавлением еще одной детали ik+1. Тогда

A (k+1) = A (k)+ ,

В (k+1) = max [A (k+1); В (k)] + ,

С (k+1) = max [В (k+1); С (k)] +

Для задачи трех станков можно использовать следующее правило доминирования .

Если некоторая начальная последовательность, а под последовательность образованная из перестановкой некоторых символов, то вариант доминирует над , когда выполняются следующие неравенства:

А ()  А ( ), В ()  В ( ), С ()  С ( ),

причем хотя бы одно из них выполняется как строгое неравенство.

Способ конструирования вариантов после-
довательностей  и вычисления оценок () для каждого из них состоит в следующем.

Пусть имеется начальная подпоследовательность . Тогда вычисляются величины:

C() = С() + , (1)

B() = В () + + min cj , (2)

A() = A () + + (3)

где J () — множество символов, образующих последовательность .

За оценку критерия С () для варианта  можно принять величину

() = max {A(), B (), C ()}. (4)

Тогда ход решения задачи трех станков можно представить следующей формальной схемой.

Нулевой шаг. Задание множества G(0), образуется всеми возможными последовательностями ( = 0).

Вычисление оценки для множества G0:

где (0) = max {A(0), B (0), бC (0)},

; ; .

Первый шаг.Образование множеств G1(1) U G1(2) U... …G1(n).

Подмножество Gk определяется всеми последовательностями с началом ik(k1, ...,n ).

В ычисление оценок. Оценку для последовательности k определяют из соотношения (4), т. е.

(k) = max {A(k), B (k), C (k)}; k = 1, n.

Выбор варианта для продолжения. Из всех подпоследовательностей, построенных на предыдущем шаге, выбирают наиболее перспективную последовательность k с наименьшей оценкой, т. е.

(k(1))=min (j(1)).

Ветвление. Выбрав наиболее перспективный вариант последовательности k(1), развивают его построением всех возможных подпоследовательностей длиной 2 с началом k(1) вида k+1(2)= (k(1), j), где j не входит в k.

Вычисление оценок производят в соответствии с соотношениями (1), (2), (3).

k - ш а г. Допустим, что уже проведено k шагов, в результате чего построены варианты 1(k), 2(k) ,…,vk(k), а именно подпоследовательности длиной k.

Выбираем самый перспективный вариант S(k) такой, что

(s(k))=min (j(k)).

Множество Gs(k) разбиваем на (п — k) подмножеств, каждое из которых образуется добавлением к последовательности s(k) некоторого элемента ik+1 такого, что ik+1 .

Оценка определяется в соответствии с соотношениями (1) — (4).

В результате строим дерево вариантов следующего вида: вершина О отвечает  = 0, вершины первого уровня G1(1), G2(1)..., Gn(1) соответствуют последовательностям длиной 1, т. е. 1(1) = 1, 2(1) = 2,..., n(1) = п и т. д. Каждая конечная вершина отвечает последовательности максимальной длины п.

Признак оптимальности. Если v(n) отвечает конечной вершине дерева, причем оценка наименьшая из оценок всех вершин, то v(n) — искомый вариант, иначе переходим к продолжению варианта с наименьшей оценкой.

Пример 6. Рассмотрим задачу .трех станков, условия которой приведены в табл. 1:

Таблица 1

Длительность операций

Деталь

1

2

3

4

5

ai

bi

ci

2

3

4

5

2

4

1

1

2

3

4

2

3

5

2

Нулевой шаг.  = 0.

A( = 0) = A(0) + + = 0 + 14 + 3 = 17;

B( = 0) = В(0) + + min cj = 0 + 15 + 2 = 17;

C( = 0) = С(0) + =14 .

Тогда

∆ ( = 0) = max {17, 17,14} = 17.

Первый шаг. Конструируем все возможные последовательности длиной 1

1(1) = 1; 2(1) = 2; 3(1) = 3; 4(1) = 4; 5(1) = 5.

Находим

A(1) = A1 + + = 14 + 3 = 17;

B(1)( = 0) = В1 + + = 5 + 12 + 2 = 19;

C(1) = С1 + = 9 + 10 = 19 .

Откуда ∆ (1) = max {17, 19, 19} = 19.

Аналогично определяем ∆ (2), ∆ (3), ∆ (4), ∆ (5).

Второй шаг. Среди множества подпоследовательностей длиной 1, 1(1) = 1, 2(1) = 2,..., 5(1) = 5 выбираем наиболее перспективную  = 1, для которой величина оценки-прогноза ∆ () оказывается наименьшей. Далее развиваем ее, конструируя возможные варианты длиной 2, т. е. (1.2), (1.3), (1.4), (1.5).

Для каждого из этих вариантов вновь определяем оценки по формулам (1) — (4).

Процесс вычислений продолжаем аналогично.

Процесс построения дерева вариантов приведен на рис. 1.

Каждой конечной вершине дерева вариантов будет отвечать полная последовательность  = i1,i2,,.in. Если для некоторой такой вершины величина оценки ∆ () не превосходит величины оценок для всех остальных вершин, то эта оценка определяет искомый оптимальный вариант. В противном случае разбиваем более перспективный вариант с наилучшей оценкой.

Конечная вершина определяет вариант (последовательность) = 3, 1, 5, 2, 4 с наилучшей оценкой ∆ = 20. Поэтому данный вариант является оптимальным.

Непосредственной проверкой убеждаемся, что время обработки всей последовательности деталей для этого варианта совпадает со значением оценки-прогноза и является минимальным:

Летература

1)Зайченко Ю. П., «Исследование операций», Киев «Высшая школа» 1975г.

2)Акулич И.Л., «Математическое программирование в примерах и задачах», Москва «В ысшая школа» 1993г.

3)Кузнецов Ю.Н., Кузубов В.И., Волощенко А.Б. «Математическое программирование», Москва «В ысшая школа» 1980г.

9


Характеристики

Тип файла
Документ
Размер
199 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее