Rachmai (692942), страница 2

Файл №692942 Rachmai (Уникальный астрономический объект SS 433) 2 страницаRachmai (692942) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

где – астрономическая единица, а – период обращения Земли вокруг Солнца, т. е. звездный год.

Разделим выражение (1.1) на (1.2), пренебрегая массой Земли из-за ее малости, получим:

. (1.3)

Зная величину отношений и , можно по формуле (1.3) вычислить, во сколько раз сумма масс компонентов двойной звезды больше массы Солнца.

Если принять за единицу длины астрономическую единицу, за единицу времени – звездный год (время полного оборота Земли вокруг Солнца) и за единицу массы – массу Солнца, выражение принимает очень простой вид:

. (1.4)

Период Т является одним из семи элементов истинной орбиты, а большая полуось а связана следующим очевидным соотношением с большой полуосью истинной орбиты , выраженной в секундах дуги и с параллаксом :

. (1.5)

Если за единицу длины принять астрономическую единицу, то

. (1.6)

Таким образом, будем ли мы для вычисления масс пользоваться формулами или более простыми формулами в обоих случаях, кроме элементов орбиты и Т, необходимо знать также и параллакс звезды .

В качестве примера рассмотрим двойную звезду Сириус, для которой отношение масс компонентов оказалось приблизительно равным 2,5. Элементы Т и истинной орбиты спутника относительно главной звезды и параллакс оказались: Т= 50,0 лет, = 7",57 и = 0",375.

Подставляя эти величины в формулы, находим: = 20,1 и 3,2, а так как : = 2,5, то = 2,3 и = 0,9, т. е. масса спутника немногим меньше массы Солнца. Известно, что спутник Сириуса является белым карликом. [16]

    1. Спектрально – двойные звезды

Звезды, двойственность которых устанавливается лишь на основании спектральных наблюдений, называются спектрально – двойными.

Характер и причина изменения спектров спектрально-двойных звезд объясняются рис. 2. Если очень близкие компоненты двойной звезды, движущиеся вокруг общего центра масс, мало отличаются друг от друга по спектру и по блес ку, то в спектре такой звезды должно наблюдаться периодически повторяющееся раздвоение спектральных линий.

Если один компонент занимает положение А1, а другой – положение В1, то оба они будут двигаться под прямым углом к лучу зрения, направленному к наблюдателю, и раздвоения спектральных линии не получится. Но если компоненты занимают положение А2 и В2, то компонент А движется к наблюдателю, а компонент В – от наблюдателя и раздвоение спектральных линий наблюдаться будет, так как у первого компонента спектральные линии сместятся к фиолетовому концу спектра, а у второго – к красному концу. Затем при дальнейшем движении компонентов раздвоение спектральных линий постепенно исчезнет (оба компонента будут опять двигаться под прямым углом к лучу зрения) и снова повторится, когда компонент А будет двигаться от наблюдателя, а компонент В – к наблюдателю. Таким образом, спектральные линии компонентов А и В будут колебаться около некоторых средних своих положений, при которых они будут совпадать и которые соответствуют лучевой скорости центра масс системы.

В
случае же, если один из компонентов значительно уступает по блеску другому (правая часть рис. 2), раздвоение спектральных линий наблюдаться не будет (из-за слабости спектра спутника), но линии спектра главной звезды колебаться будут так же, как и в первом случае.

П
ериоды изменений, происходящих в спектрах спектрально-двойных звезд, очевидно, являющиеся и периодами их обращения, бывают весьма различны. Наиболее короткий из известных периодов 2,4Ч ( Малой Медведицы), а наиболее длинные – десятки лет.

Для определения элементов орбиты какой-либо спектрально-двойной звезды необходимо иметь достаточно большое количество спектрограмм этой звезды, дающих возможность построить так называемую кривую лучевых скоростей. При построении этой кривой по оси абсцисс откладывается время, а по оси ординат – лучевые скорости. Форма кривой лучевых скоростей зависит только от двух элементов – эксцентриситета е и угла , определяющего положение периастра. Характерные образцы кривых лучевых скоростей для некоторых частных значений е и изображены на рисунке 3. Положение горизонтальной прямой у всех кривых этого рисунка соответствует лучевой скорости, которую компоненты имеют при своем движении под прямым углом к лучу зрения (т.е., иными словами, лучевой скорости центра масс системы).

Независимо от применяемого способа из числа элементов орбит спектрально-двойных звезд могут быть определены только , , Т и t. Совершенно нельзя определить позиционный угол и нельзя определить в отдельности наклонение i плоскости орбиты и большую полуось а, так как одни и те же лучевые скорости могут получиться при движении звезды по орбитам с различными наклонениями и соответственно различными большими полуосями. [2, 4, 23]

1.3. Затменно–двойные звезды

Затменными переменными называются неразрешимые в телескопы тесные пары звезд, видимая звездная величина которых меняется вследствие периодически наступающих для земного наблюдателя затмений одного компонента системы другим. В этом случае звезда с большей светимостью называется главной, а с меньшей – спутником. Типичными примерами звезд этого типа являются звезды Алголь ( Персея) и Лиры. Вследствие регулярно происходящих затмений главной звезды спутником, а также спутника главной звездой суммарная видимая звездная величина затменных переменных звезд меняется периодически.

Разность звездных величин в минимуме и максимуме называется амплитудой, а промежуток времени между двумя последовательными максимумами или минимумами – периодом переменности. У Алголя, например, период переменности равен 2d20h49m, а у Лиры– 12d21h48m.

По характеру кривой блеска затменной переменной звезды можно найти элементы орбиты одной звезды относительно другой, относительные размеры компонентов, а в некоторых случаях даже получить представление об их форме. На рис. 4 показаны кривые блеска некоторых затменных переменных звезд вместе с полученными на их основании схемами движения компонентов. На всех кривых заметны два минимума: глубокий (главный, соответствующий затмению главной звезды спутником), и слабый (вторичный), возникающий, когда главная звезда затмевает спутник.

Н
а основании детального изучения кривых блеска можно получить следующие данные о компонентах затменных переменных звезд:

1. Характер затмений (частное, полное или центральное) определяется наклонением i и размерами звезд. Когда i = 90°, затмение центральное, как у Лиры (рис. 5). В тех случаях, когда диск одной звезды полностью перекрывается диском другой, соответствующие области кривой блеска имеют характерные плоские участки (как у IH Кассиопеи), что говорит о постоянстве общего потока излучения системы в течение некоторого времени, пока меньшая звезда проходит перед или за диском большей. В случае только частных затмений минимумы острые (как у RX Г
еркулеса или Персея).

2. На основании продолжительности минимумов находят радиусы компонентов R1 и R2, выраженные в долях большой полуоси орбиты, так как продолжительность затмения пропорциональна диаметрам звезд.

3. Если затмение полное, то по отношению глубин минимумов можно найти отношение светимостей, а при известных радиусах,– также и отношение эффективных температур компонентов.

4. Отношение промежутков времени от середины главного минимума до середины вторичного минимума и от вторичного минимума до следующего главного минимума зависит от эксцентриситета орбиты е и долготы периастра . Точнее, фаза наступления вторичного минимума зависит от произведения . Если вторичный минимум лежит посередине между двумя главными минимумами (как у RX Геркулеса), то орбита симметрична относительно луча зрения и, в частности, может быть круговой. Асимметрия положения вторичного минимума позволяет найти произведение .

5. Наклон кривой блеска, иногда наблюдаемый между минимумами, позволяет количественно оценить эффект отражения одной звездой излучения другой, как, например, у Персея.

6. Плавное изменение кривой блеска, как, например, у Лиры, говорит об эллипсоидальности звезд, вызванной приливным воздействием очень близких компонентов двойных звезд. К таким системам относятся звезды типа  Лиры и W Большой Медведицы (см. рис. 5). В этом случае по форме кривой блеска можно установить форму звезд.

7. Детальный ход кривой блеска в минимумах иногда позволяет судить о законе потемнения диска звезды к краю. Выявить этот эффект, как правило, очень трудно. Однако это единственный имеющийся в настоящее время метод изучения распределения яркости по дискам звезд.

В итоге на основании вида кривой блеска затменной переменной звезды в принципе можно определить следующие элементы и характеристики системы: i – наклонение орбиты; Т – период; – эпоху главного минимума; е – эксцентриситет орбиты; – долготу периастра; R1 и R2 – радиусы компонентов, выраженные в долях большой полуоси; для звезд типа Лиры – эксцентриситеты эллипсоидов, представляющих форму звезд; L1/L2 – отношение светимостей компонентов или их температур .

В настоящее время известно свыше 4000 затменных переменных звезд различных типов. Минимальный известный период – около часа, наибольший – 57 лет. Информация о затменных звездах становится более полной и надежной при дополнении фотометрических наблюдений спектральными. [4,6].

1.4. Черные дыры

Считается, что, если масса звезды больше 2,5 , то в конце своей эволюции эта звезда превратится в черную дыру.

Черной дырой называется релятивистский объект, в котором гравитационное поле настолько сильно, что даже свет не может покинуть эту область. Это происходит, если размеры тела меньше его гравитационного радиуса

, (1.7)

г
де G – постоянная тяготения Ньютона, с – скорость света, М – масса тела. Гравитационный радиус Солнца – 3 км, Земли – около 9 мм. [18]

Как возникают черные дыры?

Известно, что если масса ядра звезды, претерпевшего изменение химического состава из-за термоядерных реакций и состоящего в основном из элементов группы железа, превышает 1,4 , но не превосходит 3 , то происходит коллапс ядра, в результате которого звезда сбрасывает внешнюю оболочку. Это приводит к вспышке сверхновой и образованию нейтронной звезды. В такой звезде силам гравитации противостоит давление вырожденного нейтронного вещества. Радиопульсары и рентгеновские пульсары как раз и представляют собой нейтронные звезды. Первые наблюдаются как источники периодических радиоимпульсов, что связано с переработкой сильным магнитным полем нейтронной звезды энергии вращения в направленное радиоизлучение.

Рентгеновские пульсары светят за счет аккреции вещества в тесных двойных системах: магнитное поле нейтронной звезды направляет плазму на полюса, где она сталкивается с поверхностью нейтронной звезды и разогревает ее до температуры в десятки миллионов градусов. Это приводит к излучению рентгеновских квантов. Поскольку горячие рентгеновские пятна на магнитных полюсах вращающейся нейтронной звезды периодически бывают обращены к наблюдателю, он видит строго периодические пульсации интенсивности рентгеновского излучения [19]. Периодические пульсации радио- или рентгеновского излучения говорят о том, что у нейтронной звезды есть твердая поверхность, сильное магнитное поле и быстрое вращение. У черной дыры строго периодических пульсаций излучения ожидать не приходится, поскольку она не имеет ни твердой поверхности, ни магнитного поля.

Характеристики

Тип файла
Документ
Размер
2,41 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6540
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее