Sun (692924), страница 2

Файл №692924 Sun (Солнце) 2 страницаSun (692924) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым. Однако по инерции сюда всё же проникают горячие потоки из более глубоких, конвективных слоёв. Хо­рошо известная наблюдателям картина грануляции на поверхности Солнца является видимым явлением конвекции.

Откуда берётся энергия Солнца?

Почему Солнце светит и не остывает уже миллиарды лет? Какое “топливо” даёт ему энергии? Ответы на эти вопросы учёные искали веками, и только вначале XX века было найдено правильное решение. Теперь известно, что Солнце, как и другие звёзды, светит благодаря протекающим в его недрах термоядерным реак­циям. Что же это за реакции?

Если ядра атомов лёгких элементов сольются в ядро атома более тяжелого эле­мента, то масса нового ядра окажется меньше, чем суммарная масса тех же ядер, из которых оно образовалось. Остаток массы превращается в энергию, которую уносят частицы, освободившиеся в ходе реакции. Эта энергия почти полностью переходит в тепло. Такая реакция синтеза атомных ядер может происходить только при очень высоком давлении и температуре свыше 10 млн. градусов. Поэтому она и называется термоядерной.

Основное вещество, составляющее Солнце, – водород, на его долю приходит около 71 % всей массы светила. Почти 27 % принадлежит гелию, а остальные 2 % - более тяжелым элементам, таким, как углерод, азот, кислород и металлы. Главным “топливом” на Солнце служит именного водород. Из четырех атомов водорода в ре­зультате цепочки превращений образуется один атом гелия. А из каждого грамма водорода, участвующего в реакции, выделяется 6  1011 Дж энергии! На Земле та­кого количества энергии хватило бы для того, чтобы нагреть от температуры 00С до точки кипения 1000 м3 воды!

Рассмотрим механизм термоядерной реакции превращения водорода в гелий, которая, по-видимому, наиболее важна для большинства звёзд. Называется она про­тон-протонной, так как начинается с тесного сближения двух ядер атомов водорода – протонов.

Протоны заряжены положительно, поэтому взаимно отталкиваются, причём, по закону Кулона, сила этого отталкивания обратно пропорциональна квадрату рас­стояния и при тесных сближениях должна стремительно возрастать. Однако при очень высоких температуре и давлении скорости теплового движения частиц столь велики, а частицам так тесно, что наиболее быстрые из них всё же сближаются друг с другом и оказываются в сфере влияния ядерных сил. В результате может про­изойти цепочка превращений, которая завершится возникновением нового ядра, со­стоящего из двух протонов и двух нейтронов, - ядра гелия.

Далеко не каждое столкновение двух протонов приводит к ядерной реакции. В течение миллиардов лет протон может постоянно сталкиваться с другими прото­нами, так и не дождавшись ядерного превращения. Но если в момент тесного сбли­жения двух протонов произойдёт ещё и другое маловероятное для ядра событие – распад протона на нейтрон, позитрон и нейтрино (такой процесс называется бета-распадом), то протон с нейтроном объединяется в устойчивое ядро атома тяжелого водорода – дейтерия.

Ядро дейтерия (дейтон) по своим свойствам похоже на ядро водорода, только тяжелее. Но в отличии от последнего в недрах звезды ядро дейтерия долго сущест­вовать не может. Уже через несколько секунд, столкнувшись ещё с одним протоном, оно присоединяет его к себе, испускает мощный гамма-квант и становится ядром изотопа гелия, у которого два протона связаны не с двумя нейтронами, как у обыч­ного гелия, а только с одним. Раз в несколько миллионов лет такие ядра лёгкого ге­лия сближаются настолько тесно, что могут объединиться в ядро обычного гелия, “отпустив на свободу” два протона.

Итак, в итоге последовательных ядерных превращений образуется ядро обыч­ного гелия. Порожденные в ходе реакции позитроны и гамма кванты передают энер­гию окружающему газу, а нейтрино совсем уходят из звезды, потому что обладают удивительной способностью проникать через огромные толщи вещества, не задев ни одного атома.

Реакция превращения водорода в гелий ответственно за то, что внутри Солнца сейчас гораздо больше гелия, чем на его поверхности. Ес­тественно, возникает вопрос: что же будет с Солнцем, когда весь водород в его ядре выгорит и превратиться в гелий, а как скоро это произой­дет?

Оказывается, примерно через 5 миллиардов лет содержание водорода в ядре Солнца настолько уменьшится, что его горение начнется в слое вокруг ядра. Это приведет к раздуванию солнечной атмосферы, увеличе­нию размеров Солнца, падению температуры на поверхности и повыше­нию ее в ядре. Постепенно Солнце превратится в красный гигант - сравнительно холодную звезду огромного размера с атмосферой, превосхо­дящей границы орбиты Земли. Жизнь Солнца на этом закончится, и оно будет претерпевать еще много изменений, пока в конце концов не ста­нет холодным и плотным газовым шаром, внутри которого уже не про­исходит никаких термоядерных реакций.

Колебания Солнца. Гелиосейсмология

Гелио? Сейсмология? Какая связь между Солнцем и землетрясением? Или, мо­жет быть, на Солнце тоже происходят землетрясения, или, вернее, солнцетрясения?

Земная сейсмология основана на особенностях звука под землёй. Однако на Солнце сейсмограф (прибор, регистрирующий колебания почвы) поставить нельзя. Поэтому колебания Солнца измеряют совершенно другими методами. Главный из них основан на эффекте Доплера. Так как солнечная поверхность ритмически опус­кается и поднимается (колеблется), то её приближение-удаление сказывается на спектре излучаемого света. Исследуя спектры разных участков солнечного диска, получают картину распределения скоростей; конечно же, со временем она меняется – волны бегут. Периоды этих волн лежат в диапазоне примерно от 3 до 10 мин. Ко­гда же они впервые были открыты, найденное значение периода составило примерно 5 мин. С тех пор все эти колебания называются “пятиминутные”.

Скорости колебания солнечной поверхности очень малы – десятки сантиметров в секунду, и измерить их невероятно сложно. Но часто интересно не само значение скорости, а то, как оно меняется с течением времени (как волны проходят по по­верхности). Допустим, человек находится в помещении с плотно зашторенными ок­нами; на улице солнечно, но в комнате полумрак. И вдруг едва заметное движение воздуха чуть сдвигают штору, и в глаза ударяет ослепляющий солнечный луч. Лёг­кий ветерок вызывает столь сильный эффект! Примерно так же измеряют учёные малейшие изменения лучевой скорости солнечной поверхности. Роль шторы играют линии поглощения в спектре Солнца. Прибор, измеряющий яркость солнечного света, настраивается так, чтобы он пропускал лишь свет с длиной волны точно в центре какой-либо узкой линии поглощения. Тогда при малейшем изменении длины волны на вход прибора попадёт не тёмная линия, а яркий соседний участок непре­рывного спектра. Но это ещё не всё.

Чтобы измерить период волны с максимальной точностью, её нужно наблюдать как можно дольше, причём без перерывов, иначе потом нельзя будет определить, ка­кая это волна – та же самая или уже другая. А Солнце каждый вечер скрывается за горизонтом, да ещё тучи время от времени набегают…

Первое решение проблемы состояло в наблюдении за Южным полярным кру­гом – там Солнце летом не заходит за горизонт неделями и к тому же больше ясным дней, чем в Заполярье. Однако налаживать работу астрономов в Антарктиде сложно и дорого. Другой предложенный путь более очевиден, но ещё более дорог: наблю­де­ние из космоса. Такие наблюдения иногда проводятся как побочные исследования (например, на отечественных “Фобосах”, по они летели к Марсу). В конце 1995 года был запущен международный спутник SOHO (Solar and Heliospheric Observatory), на котором установлено множество приборов, разработанных учёными разных стран.

На большую часть наблюдений по-прежнему проводят с Земли. Чтобы избе­жать перерывов, связанных с ночами и плохой погодой, Солнце наблюдают с разных континентов. Ведь когда в Восточном полушарии ночь, в Западном – день, и наобо­рот. Современные методы позволяют представить такие наблюдения как один не­прерывный ряд. Немаловажное условие для этого – чтобы телескопы и приборы были одинаковыми. Подобные наблюдения проводят в рамках крупных междуна­родных проектов.

Что же удалось узнать о Солнце, изучая эти необычные, беззвучные звуковые волны? Сначала представление об их природе не сильно отличались от того, что было известно о колебаниях земной коры. Учёные представляли себе, как процессы на Солнце (например, грануляция) возбуждают эти волны, и они бегут по поверхно­сти нашего светила, словно морские волны по водной глади.

Но в дальнейшем обнаружился очень интересный факт: оказалось, что некото­рые волны в разных частях солнечного диска связаны между собой (физики говорят: имеют одну фазу). Это можно представить себе так, будто вся поверхность покрыта равномерной сеткой волн, но в некоторых местах она не видна, а в других отчетливо проявляется. Получается, что разные области имеют тем не менее согласованную картину осцилляции. Исследователи пришли к выводу, что солнечные колебания носят глобальный характер: волны пробегают очень большие расстояния и в разных местах солнечного диска видны проявления одной и той же волны. Таким образом, можно сказать, что Солнце “звучит, как колокол”, т.е. как одно целое.

Как и в случае с Землёй, колебания поверхности Солнца – лишь отзвук тех волн, которые распространяются в его глубинах. Одни волны доходят до центра Солнца, другие затухают на полпути. Это и помогает исследовать свойства разных частей солнечных недр. Изучая волны с разной глубиной проникновения, удалось даже построить зависимость скорости звука от глубины! А поскольку из теории из­вестно, что на нижней границе зоны конвекции должно быть резкое изменение ско­рости звука, удалось определить, где начинается солнечная конвективная зона. Это не сегодня одно из важнейших достижений гелиосейсмологии.

Есть у гелиосейсмологии и свои проблемы. Например, пока не удалось выяс­нить причину колебаний солнечной поверхности. Считается, что наиболее вероят­ный источник колебаний – грануляция: выходящие на поверхность потоки раска­лённой плазмы, подобно мощным фонтанам, вызывают разбегающиеся во все сто­роны волны. Однако на деле всё не так просто, и теоретики пока не смогли удовле­творительно описать эти процессы. В частности, неясно, почему волны столь устой­чивы, что могут обежать всё Солнце, не затухая?

С помощью методов гелиосейсмологии удалось установить, что внутренняя часть Солнца (ядро) вращается заметно быстрее, чем наружные слои. Неравномер­ное вращение Солнца оказывает на его осцилляции такое же воздействие, как тре­щина на колокол. В результате “звук” становится не очень чистым – изменяются существующие периоды колебаний и появляются новые. Это даёт возможность ис­следовать вращение внутренних слоёв, которое другими методами пока изучать нельзя. Считается, что именно благодаря неравномерному вращению Солнца имеет магнитное поле.

Вот такая неожиданная и бурно развивающаяся сейчас область науки возникла из, казалось бы, ничём не примечательных измерений движений солнечной поверх­ности.

Солнечная атмосфера

Земная атмосфера – это воздух, которым мы дышим, привычная нам газовая оболочка Земли. Такие оболочки есть и у других планет. Звёзды целиком состоят из газа, но их внешние слои также именуют атмосферой. При этом внешними счита­ются те слои, откуда хотя бы часть излучения может беспрепятственно, не поглоща­ясь вышележащими слоями, уйти в окружающее пространство.

Фотосфера

Атмосфера Солнца начинается на 200 – 300 км глубже видимого края солнеч­ного диска. Эти самые глубокие слои атмосферы называют фотосферой. Поскольку их толщина составляет не более одной трёхтысячной доли солнечного радиуса, фо­тосферу иногда условно называют поверхностью Солнца.

Плотность газов в фотосфере примерно такая же, как в земной стратосфере, и сотни раз меньше, чем у поверхности Земли. Температура фотосферы уменьшается от 8000 К на глубине 300 км до 4000 К в самых верхних слоях. Температура же того среднего слоя, излучение которого мы воспринимаем, около 6000 К.

При таких условиях почти все молекулы газа распадаются на отдельные атомы. Лишь в самых верхних слоях фотосферы сохраняются относительно немного про­стейших молекул и радикалов типа H2, OH, CH.

Особую роль в солнечной атмосфере играет не встречающийся в земной при­роде отрицательный ион водорода, который представляет собой протон с двумя электронами. Это необычное соединение возникает в тонком, внешнем, наиболее “холодном” слое фотосферы при “налипании” на нейтральные атомы водорода от­рицательно заряженных свободных электронов, которые поставляются легко иони­зуемыми атомами кальция, натрия, магния, железа и других металлов. При возник­новении отрицательные ионы водорода излучают большую часть видимого света. Этот же свет ионы жадно поглощают, из-за чего непрозрачность атмосферы с глу­биной быстро растёт. Потому видимый край Солнца и кажется нам очень резким.

Почти все наши знания о Солнца основаны на изучении его спектра – узенькой разноцветной полоски, имеющей ту же природу, что и радуга. Впервые, поставив призму на пути солнечного луча, такую полоску получил Ньютон и воскликнул: “Спектрум!” (латинское Spectrum – “видение”). Позже в спектре Солнца заметили тём­ные линии и сочли их границами цветов. В 1815 году немецкий физик Йозеф Фраун­гофер дал первое подробное описание таких линий в солнечном спектре, и их стали называть его именем. Оказалось, что фраунгоферовы линии соответствуют уз­ким участкам спектра, которые сильно поглощаются атомами различных веществ.

В телескоп с большим увеличением можно наблюдать тонкие детали фото­сферы: вся она кажется усыпанной мелкими яркими зёрнышками – гранулами, раз­делёнными сетью узких тёмных дорожек. Грануляция является результатом пере­мешивания всплывающих более тёплых потоков газа и опускающихся более холод­ных.

Разность температур между ними в наружных слоях сравнительно невелика (200-300 К), но глубже, в конвективной зоне, она больше, и перемешивание проис­ходит значительно интенсивнее. Конвекция во внешних слоях Солнца играет ог­ромную роль, определяя общую структуру атмосферы. В конечном счёте именно конвекция в результате сложного взаимодействия с солнечными магнитными по­лями является причиной всех многообразных проявлений солнечной активности.

Характеристики

Тип файла
Документ
Размер
247,5 Kb
Материал
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее