108897 (692770), страница 2
Текст из файла (страница 2)
9 Рассчитываем температуру нагретой зоны
Этап 3 Расчет температуры поверхности элемента
1 Определяем эквивалентный коэффициент теплопроводности модуля, в котором расположена микросхема Для нашего случая, когда отсутствуют теплопроводные шины экв = п = 0.3 Вт/(м К) , где п - теплопроводность материала основания печатной платы
2 Определяем эквивалентный радиус корпуса микросхем
где S0ИС - площадь основания микросхемы, S0ИС = 00195 0006 = 0000117 м2
3 Рассчитываем коэффициент распространения теплового потока
где 1 и 2 - коэффициенты обмена с 1-й и 2-й стороной ПП для естественного теплообмена 1 + 2 = 18 Вт/(м2 К)
hпп - толщина ПП
4 Определяем искомый перегрев поверхности корпуса микросхемы для ИМС номер 13 находящейся в середине ПП и поэтому работающей в наихудшем тепловом режиме
где В и М - условные величины, введенные для упрощения формы записи, при одностороннем расположении корпусов микросхем на ПП В = 85 R2 Вт/К, М = 2
к - эмпирический коэффициент для корпусов микросхем, центр которых отстоит от концов ПП на расстоянии менее 3R, к = 1.14 для корпусов микросхем, центр которых отстоит от концов ПП на расстоянии более 3R, к = 1
к - коэффициент теплоотдачи от корпусов микросхем определяется по графика (рис 417) [1] и для нашего случая к = 12 Вт/(м2 К)
Ni - число i-х корпусов микросхем расположенный вокруг корпуса рассчитываемой микросхемы на расстоянии не более ri < 10/m = 0.06 м, для нашей ПП Ni = 24
К1 и К0 - модифицированные функции Бесселя, результат расчета которых представлен ниже
tв - среднеобъемный перегрев воздуха в блоке
QИСi - мощность, рассеиваемая i-й микросхемой, в нашем случае для всех одинаковая и равна 0001 Вт
SИСi - суммарная площадь поверхностей i-й микросхемs, в нашем случае для всех одинаковая и равна SИСi = 2 (с1 с2 + с1 с3 + с2 с3) = 2 (195 6 + 19.5 4 + 6 4) = 438 мм2 = 0000438 м2
зi - зазор между микросхемой и ПП, зi = 0
зi - коэффициент теплопроводности материала, заполняющего этот зазор
Подставляя численные значения в формулу получаем
5 Определяем температуру поверхности корпуса микросхемы
Такая температура удовлетворяет условиям эксплуатации микросхемы Тр = -45+70 оС, и не требует дополнительной системы охлаждения
РАСЧЕТ МАССЫ БЛОКА
Исходные данные для расчета
Масса блока ИС | mис = 24 г = 0024 кг |
Плотность дюралюминия | др = 2800 кг/м3 |
Плотность стеклотекстолита | Ст = 1750 кг/м3 |
Толщина дюралюминия | hk = 1 мм = 0001 м |
Толщина печатной платы | hпп = 2 мм = 0002 м |
Количество печатных плат | nпп = 60 |
Количество ИС | nис = 25 |
РАСЧЕТ СОБСТЕННОЙ ЧАСТОТЫ ПП
Так как в нашей ПП используются однотипные микросхемы равномерно распределенные по поверхности ПП, то для определения собственной частоты колебаний ПП можно воспользоваться формулой для равномерно нагруженной пластины
где a и b - длина и ширина пластины, a = 186 мм, b = 81 мм
D - цилиндрическая жесткость
E - модуль упругости, E = 3.2 10-10 Н/м
h - толщина пластины, h = 2 мм
- коэффициент Пуассона, = 0.279
М - масса пластины с элементами, М = mпп + mис 25 = 0.095 + 0.024 25 = 0.695 кг
K - коэффициент зависящий от способа закрепления сторон пластины
k, , , - коэффициенты приведенные в литературе [1]
Подставляя значения параметров в формулу рассчитываем значение собственной частоты
РАСЧЕТ СХЕМЫ АМОРТИЗАЦИИ
Исходные данные
Вид носителя - управляемый снаряд | ||||||
Масса блока m = 42.385 кг | ||||||
f, Гц | 10 | 30 | 50 | 100 | 500 | 1000 |
g | 5 | 8 | 12 | 20 | 25 | 30 |
1. Рассчитаем величину вибросмещения для каждого значения f.
так как нам известен порядок К 103, то при минимальной частоте f = 10 Гц
следовательно мы можем рассчитать величину вибросмещения для каждой частоты спектра Результат расчета представим в таблице
f, Гц | 10 | 30 | 50 | 100 | 500 | 1000 |
g | 5 | 8 | 12 | 20 | 25 | 30 |
, мм | 13 | 2 | 1 | 05 | 025 | 0076 |
2. Расчет номинальной статической нагрузки и выбор амортизатора
Так как блок заполнен одинаковыми модулями то и масса его распределена равномерно При таком распределении нагрузки целесообразно выбрать симметричное расположение амортизаторов В таком случае очень легко рассчитывается статическая нагрузка на амортизатор
Исходя из значений Р1...Р4 выбираем амортизатор АД -15 который имеет номинальную статическую нагрузку Рном = 100....150 Н, коэффициент жесткости kам = 1864 Н/см, показатель затухания = 05
3 Расчет статической осадки амортизатора и относительного перемещения блока
Статическая осадка амортизаторов определяется по формуле
Для определения относительного перемещения s(f) необходимо сначала определить собственную частоту колебаний системы
и коэффициент динамичности который определяется по следующей формуле
Результат расчета представим в виде таблице
Масса блока m = 42.385 кг | ||||||
f, Гц | 10 | 30 | 50 | 100 | 500 | 1000 |
g | 5 | 8 | 12 | 20 | 25 | 30 |
f, Гц | 10 | 30 | 50 | 100 | 500 | 1000 |
(f), мм | 13 | 2 | 1 | 05 | 025 | 0076 |
(f) | 1.003 | 1.118 | 1.414 | 2.236 | 4.123 | 13.196 |
s(f)= (f) (f) | 13.039 | 2.236 | 1.414 | 1.118 | 1.031 | 1.003 |
РАСЧЕТ НАДЕЖНОСТИ БЛОКА ПО ВНЕЗАПНЫМ ОТКАЗАМ
Так как носителем нашего блока является управляемый снаряд время жизни которого мало, и схема состоит только из последовательных элементов тот мы принимаем решение не резервировать систему.
Интенсивность отказов элементов с учетом условий эксплуатации изделия определяется по формуле
где 0i - номинальная интенсивность отказов
k1, k2 - поправочные коэффициенты в зависимости от воздействия механических факторов
k3 - поправочный коэффициент в зависимости от давления воздуха
Значения номинальных интенсивностей отказа и поправочных коэффициентов для различных элементов использующихся в блоке были взяты из литературы [1] и приведены в таблице
Элемент | 0i,1/ч | k1 | k2 | k3 | k4 |
Микросхема | 0,013 | 1,46 | 1,13 | 1 | 1,4 |
Соединители | 0,062 24 | 1,46 | 1,13 | 1 | 1,4 |
Провода | 0,015 | 1,46 | 1,13 | 1 | 1,4 |
Плата печатной схемы | 0,7 | 1,46 | 1,13 | 1 | 1,4 |
Пайка навесного монтажа | 0,01 | 1,46 | 1,13 | 1 | 1,4 |
Вероятность безотказной работы в течении заданной наработки tp для нерезервированных систем определяется из формулы
Среднее время жизни управляемого снаряда не превышает 1...2 минут и следовательно значение P(0.033) = 0.844, что вполне удовлетворяет техническим условиям