147452 (691923), страница 2
Текст из файла (страница 2)
Диаметр барабана и блока по средней линии навитого каната равен
(6)
где dк – диаметр каната, мм, dк = 12мм;
e – коэффициент, зависящий от типа машины, привода и режима работы, по таблице 4[1] e = 25
Рисунок 2.3 – Геометрические параметры барабана
2.6 Определение длины барабана
Длина каната, навиваемого на барабан с одного полиспаста
(7)
где h – высота подъема груза, м;
Z1 – число запасных витков на барабане до места крепления каната, Z1 =
1,5÷2, принимаем Z1 = 2;
Z2 – число витков каната, находящихся под прижимным устройством на барабане, Z2 = 3÷4, принимаем Z2 = 3.
2.7 Определение длины барабана
Рисунок 2.4 – Длина барабана
При расчете рабочей длины барабана следует учесть, что в проектируемом механизме полиспаст сдвоенный. Тогда рабочая длина барабана для каната, свиваемого с одного полиспаста, будет равна
(8)
где tб – шаг винтовой линии, по таблице 4.4[3] tб =16 мм.
Тогда
Полная длина барабана для сдвоенного полиспаста
(9)
где В – расстояние между осями крайних блоков крюковой подвески, по таблицам приложения Г [3] выбираем типовую крюковую подвеску с учетом грузоподъемности, режима работы, диаметра каната и схемы полиспаста;
Таблица 2.2 – Основные параметры подвесок
| Грузоподъемность, т | Режим работы | Тип | Диаметр каната | Размеры, мм | Масса, кг | ||||
| D | B | B1 | B2 | H | |||||
| 12,5 | С | I | 17,5 | 450 | 400 | 266 | 342 | 888 | 198 |
S – ненарезанная часть барабана, необходимая для закрепления его в станке при нарезке канавок,
(10)
Так как длина барабана меньше трех его диаметров, то выполнение проверочного расчета на изгиб не требуется.
2.8 Определение толщины стенки барабана
Толщину стенки барабана определяют из условий сжатия, учитывая, что он нагружен равномерно распределенной нагрузкой вследствие огибания его натянутым канатом силой Fmax.
олщина стенки барабана из расчета на сжатия
(11)
где
коэффициент, учитывающий влияние изгибающих напряжений, которые возникают при навивке каната,
коэффициент, отражающий влияние на нагрузку барабана деформаций стенки и каната
(12)
где Ек – модуль упругости каната, для шестипрядных канатов с органическим сердечником Ек = 88260 Н/мм2,
Ак =0,4dк2 – площадь сечения всех проволок каната, мм2;
Еб – модуль упругости стенки барабана, для чугунных барабанов Еб = 98000 Н/мм2;
допускаемое напряжение сжатия, Н/мм2;
Для чугуна
(13)
где
предел прочности, Н/мм2; для чугуна СЧ28 ГОСТ 1412 – 70,
;
n – запас прочности, для чугунных барабанов n = 4,0…4,25,
Тогда
,
,
Из условия технологии изготавливаемых литых барабанов толщина стенкидолжна быть не менее, м
(14)
где D – диаметр барабана по дну канавки, м
(15)
Принимаем
2.9 Определение частоты вращение барабана
Частота вращения барабана
(16)
где
скорость подъема груза, м/мин,
Таким образом
2.10 Определение статической мощности двигателя, выбор типового электродвигателя
Максимальная статическая мощность двигателя, которую должен иметь механизм в период установившегося движения при подъеме номинального груза, равна
(17)
где
предварительное значение КПД механизма,
Так как крановые двигатели являются большегрузными, допускается их перегрузка до 30%, то есть
По режиму работы и мощности двигателя по таблицам приложения А выбираем электродвигатель серии MTF.
Таблица 2.3 – Основные технические данные выбранного электродвигателя
| Тип двигателя | Мощность на валу, кВт | n, об/мин | КПД | Момент инерции, кгм2 | Масса |
| 4МТН 225L6 | 55 | 960 | 87 | 1,02 | 500 |
Таблица 2.4 – Основные размеры (мм) электродвигателя 4МТН 225L6
| Тип двигателя | b1 | b10 | b11 | b12 | d1 | d10 | l1 | l3 | l10 | l11 | l12 | l20 | l28 | l30 |
| 4МТН 225L6 | 18 | 356 | 435 | 95 | 70 | 19 | 140 | 105 | 356 | 404 | 92 | 1070 | 149 | 1220 |
2.11 Определение расчетной мощности редуктора и его выбор
Редукторы для механизма подъема выбирают, исходя из расчетной мощности или крутящего момента частоты вращения быстроходного вала, передаточного числа редуктора и режима работы. Для горизонтальных
редукторов
(18)
где kp – коэффициент, учитывающий условия работы редуктора, для приводов механизмов подъема грузов kp = 1,
При выборе редуктора должно соблюдаться условия, касающиеся прочности, долговечности и кинематики редуктора
Первое условие – расчетная мощность редуктора на быстроходном валу не должна превышать номинальную мощность на быстроходном валу редуктора
(19)
Второе условие – передаточное число редуктора не должно отличаться от требуемого передаточного числа более чем на ±15%
(20)
Требуемое число редуктора равно
(21)
где nдв – частота вращения двигателя, мин-1;
nт – частота вращения барабана, мин-1,
По таблице приложения Б[3] в соответствии с расчетной мощностью, частотой вращения быстроходного вала, режимом работы и передаточным числом выбираем редуктор Ц2 – 400.
Таблица 2.5 – Основные параметры редуктора Ц2
| Тип редуктора | Режим работы | Передаточное число | Максимальная мощность на быстроходном валу, кВт | Частота вращения быстроходного вала, об/мин |
| Ц2 - 400 | Средний | 12,41 | 81 | 1500 |
Проверяем второе условие
что меньше допускаемых 15%
Таблица 2.6 – Размеры редуктора
| Типоразмер редуктора | Размеры, мм | |||||||||||||||||||||
| А | Аб | АТ | А1 | С1 | Н0 | L1 | q | L | B | H | ||||||||||||
| Ц2 - 400 | 400 | 150 | 250 | 287 | 150 | 265 | 640 | 27 | 805 | 380 | 505 | |||||||||||
| Ц2 - 400 | 325 | 415 | 358 | 280 | 205 | 33 | 320 | 250 | 6 | 317 | ||||||||||||
а) б)
Рисунок 2.8 – Общий вид концов валов редуктора Ц2, а – тихоходного; б – быстроходного
Таблица 2.7 – Геометрические параметры концов валов редуктора Ц2
| Типоразмер редуктора | d8 | d9 | d10 | D | l7 | l8 | l9 | l10 | l11 | B3 | d5 | b3 | l3 | l5 |
| Ц2 - 400 | 110 | 100 | 140 | 252 | 69 | 30 | 60 | 255 | 65 | 205 | 95 | 28 | 170 | 138 |
2.12 Определение статического момента на валу двигателя при подъеме груза
Момент статического сопротивления на валу двигателя в период пуска при подъеме груза, Нм















