142709 (691450), страница 7

Файл №691450 142709 (Техника как социокультурное явление) 7 страница142709 (691450) страница 72016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

Показательно также, что впервые сформулированные Зеноном парадоксы бесконечной делимости пространства были осмыслены позднее как проблема сопоставления бесконечных множеств. В апории “Ахиллес” (и других апориях) по существу было выявлено, что любой путь (отрезок), если его рассмотреть как бесконечно делимый, предстает как бесконечное множество точек, а любая часть этого пути также является бесконечным множеством точек и с этих позиций может быть приравнена к целому. Как справедливо отмечал историк науки А.Койре, эта проблема почти через два с половиной тысячелетия стала одной из фундаментальных в математике. Над ней размышляли великие математики Бернард Больцано и Георг Кантор, и она в значительной степени стимулировала современную разработку теории множеств.

Конечно, во времена элеатов все эти эвристические возможности философского познания, открывающего проблемы науки будущего, не были известны. Но важно то, что в философии этого времени возникали образцы теоретического рассуждения, которые ориентировались не столько на очевидности чувственного опыта, сколько на сущее, данное разуму. И здесь предпочтение отдавалось как раз теоретическому размышлению, которое способно выходить за рамки здравого смысла своего времени, стереотипов, выработанных в системе ограниченной повседневной практики.

В традиционных обществах Востока такого рода теоретические функции философии реализовались в урезанном виде. Генерация нестандартных представлений о мире в философских системах Индии и Китая осуществлялась спорадически, совпадая с периодами крупных социальных катаклизмов (например, период “сражающихся царств” в Древнем Китае). Но в целом философия тяготела к идеологическим конструкциям, обслуживающим традицию. Например, конфуцианство и брахманизм были философскими системами, которые одновременно выступали и как религиозно-идеологические учения, регулирующие поведение и деятельность людей. Что же касается Древнего Египта и Вавилона, в которых был накоплен огромный массив научных знаний и рецептур деятельности, относящихся к этапу преднауки, то в них философское знание в лучшем случае находилось в стадии зарождения. Оно еще не отпочковалось от религиозно-мифологических систем, которые доминировали в культуре этих обществ.

Принципиально иную картину дает социальная жизнь античного полиса. Особенности этой жизни создавали намного более благоприятные условия для реализации теоретических функций философии.

Античная философия продемонстрировала, как можно планомерно развертывать представление о различных типах объектов (часто необычных с точки зрения наличного опыта) и способах их мысленного освоения. Она дала образцы построения знаний о таких объектах. Это поиск единого основания (первоначал и причин) и выведение из него следствий (необходимое условие теоретической организации знаний). Эти образцы оказали бесспорное влияние на становление теоретического слоя исследований в античной математике.

Идеал обоснованного и доказательного знания складывался в античной философии и науке под воздействием социальной практики полиса. Восточные деспотии, например, не знали этого идеала. Знания вырабатывались здесь кастой управителей, отделенных от остальных членов общества (жрецы и писцы Древнего Египта, древнекитайские чиновники и т.д.), и предписывались в качестве непререкаемой нормы, не подлежащей сомнению. Условием приемлемости знаний, формулируемых в виде предписаний, были авторитет их создателей и наличная практика, построенная в соответствии с предложенными нормативами. Доказательство знаний путем их выведения из некоторого основания было излишним (требование доказанности оправдано только тогда, когда предложенное предписание может быть подвергнуто сомнению и когда может быть выдвинуто конкурирующее предписание).

Ряд знаний в математике Древнего Египта и Вавилона, по-видимому, не мог быть получен вне процедур вывода и доказательства. М.Я.Выгодский считает, что, например, такие сложные рецепты, как алгоритм вычисления объема усеченной пирамиды, были выведены на основе других знаний[16]. Однако в процессе изложения знаний этот вывод не демонстрировался. Производство и трансляция знаний в культуре Древнего Египта и Вавилона закреплялись за кастой жрецов и чиновников и носили авторитарный характер. Обоснование знания путем демонстрации доказательства не превратилось в восточных культурах в идеал построения и трансляции знаний, что наложило серьезные ограничения на процесс превращения “эмпирической математики” в теоретическую науку.

В противоположность восточным обществам, греческий полис принимал социально значимые решения, пропуская их через фильтр конкурирующих предложений и мнений на народном собрании. Преимущество одного мнения перед другим выявлялось через доказательство, в ходе которого ссылки на авторитет, особое социальное положение индивида, предлагающего предписание для будущей деятельности, не считались серьезной аргументацией. Диалог велся между равноправными гражданами, и единственным критерием была обоснованность предлагаемого норматива. Этот сложившийся в культуре идеал обоснованного мнения был перенесен античной философией и на научные знания. Именно в греческой математике мы встречаем изложение знаний в виде теорем: “дано - требуется доказать - доказательство”. Но в древнеегипетской и вавилонской математике такая форма не была принята, здесь мы находим только нормативные рецепты решения задач, излагаемые по схеме: “Делай так!”... “Смотри, ты сделал правильно!”

Характерно, что разработка в античной философии методов постижения и развертывания истины (диалектики и логики) протекала как отражение мира сквозь призму социальной практики полиса. Первые шаги к осознанию и развитию диалектики как метода были связаны с анализом столкновения в споре противоположных мнений (типичная ситуация выработки нормативов деятельности на народном собрании). Что же касается логики, то ее разработка в античной философии началась с поиска критериев правильного рассуждения в ораторском искусстве и выработанные здесь нормативы логического следования были затем применены к научному рассуждению.

Применение образцов теоретического рассуждения к накопленным на этапе преднауки знаниям математики постепенно выводили ее на уровень теоретического познания. Уже в истоках развития античной философии были предприняты попытки систематизировать математические знания, полученные в древних цивилизациях, и применить к ним процедуру доказательства. Так, Фалесу, одному из ранних древнегреческих философов, приписывается доказательство теоремы о равенстве углов основания равнобедренного треугольника (в качестве факта это знание было получено еще в древнеегипетской и вавилонской математике, но оно не доказывалось в качестве теоремы). Ученик Фалеса Анаксимандр составил систематический очерк геометрических знаний, что также способствовало выявлению накопленных рецептов решения задач, которые следовало обосновывать и доказывать в качестве теорем.

Важнейшей вехой на пути создания математики как теоретической науки были работы пифагорейской школы. Ею была создана картина мира, которая хотя и включала мифологические элементы, но по основным своим компонентам была уже философско-рациональным образом мироздания. В основе этой картины лежал принцип: началом всего является число. Пифагорейцы считали числовые отношения ключом к пониманию мироустройства. И это создавало особые предпосылки для возникновения теоретического уровня математики. Задачей становилось изучение чисел и их отношений не просто как моделей тех или иных практических ситуаций, а самих по себе, безотносительно к практическому применению. Ведь познание свойств и отношений чисел теперь представало как познание начал и гармонии космоса. Числа представали как особые объекты, которые нужно постигать разумом, изучать их свойства и связи, а затем уже, исходя из знаний об этих свойствах и связях, объяснить наблюдаемые явления. Именно эта установка характеризует переход от чисто эмпирического познания количественных отношений (познания, привязанного к наличному опыту) к теоретическому исследованию, которое, оперируя абстракциями и создавая на основе ранее полученных абстракций новые, осуществляет прорыв к новым формам опыта, открывая неизвестные ранее вещи, их свойства и отношения.

В пифагорейской математике, наряду с доказательством ряда теорем, наиболее известной из которых является знаменитая теорема Пифагора, были осуществлены важные шаги к соединению теоретического исследования свойств геометрических фигур со свойствами чисел. Связи между этими двумя областями возникающей математики были двухсторонними. Пифагорейцы стремились не только использовать числовые отношения для характеристики свойств геометрических фигур, но и применять к исследованию совокупностей чисел геометрические образы. Так, число “10”, которое рассматривалось как совершенное число, завершающее десятки натурального ряда, соотносилось с треугольником, основной фигурой, к которой при доказательстве теорем стремились свести другие геометрические фигуры. Соотношение числа “10” и равностороннего треугольника изображались следующей схемой:

Здесь первый ряд соответствует “1”, второй - “2”, третий - числу “3”, четвертый - числу “4”, а сумма их дает число “10” (1+2+3+4=10).

Нужно сказать, что связь геометрии и теории чисел обусловила постановку перспективных проблем, которые стимулировали развитие математики и привели к ряду важных открытий. Так, уже в античной математике при решении задачи числового выражения отношения гипотенузы к катетам были открыты иррациональные числа. Исследование “фигурных чисел”, продолжающее пифагорейскую традицию, также получило развитие в последующей истории математики.

Разработка теоретических знаний математики проводилась в античную эпоху в тесной связи с философией и в рамках философских систем. Практически все крупные философы античности - Демокрит, Платон, Аристотель и др. - уделяли огромное внимание математическим проблемам. Они придали идеям пифагорейцев, отягощенным многими мистико-мифологическими наслоениями, более строгую рациональную форму. И Платон, и Аристотель, хотя и в разных версиях, отстаивали идею, что мир построен на математических принципах, что в основе мироздания лежит математический план. Эти представления стимулировали как развитие собственно математики, так и ее применение в различных областях изучения окружающего мира. В античную эпоху уже была сформулирована идея о том, что язык математики должен служить пониманию и описанию мира. Как подчеркивал Платон, “Демиург (Бог) постоянно геометризирует”, т.е. геометрические образцы выступают основой для постижения космоса. Развитие теоретических знаний математики в античной культуре достойно завершилось созданием первого образца научной теории - евклидовой геометрии. В принципе ее построение, объединившее в целостную систему отдельные блоки геометрических задач, решаемых в форме доказательства теорем, знаменовали формирование математики в особую, самостоятельную науку.

Вместе с тем в античности были получены многочисленные приложения математических знаний к описаниям природных объектов и процессов. Прежде всего это касается астрономии, где были осуществлены вычисления положения планет, предсказания солнечных и лунных затмений, предприняты смелые попытки оценить размеры Земли, Луны, Солнца и расстояний между ними (Аристарх Самосский, Эратосфен, Птолемей). В античной астрономии были созданы две конкурирующие концепции строения мира: гелеоцентрические представления Аристарха Самосского (предвосхитившие последующие открытия Коперника) и геоцентрическая система Гиппарха и Птолемея. И если идея Аристарха Самосского, предполагавшая круговые движения планет по орбитам вокруг Солнца, столкнулась с трудностями при объяснении наблюдаемых перемещений планет на небесном своде, то система Птолемея, с ее представлениями об эпициклах, давала весьма точные математические предсказания наблюдаемых положений планет Луны и Солнца. Основная книга Птолемея “Математическое построение” была переведена на арабский язык под названием “Аль-магисте” (великое), и затем вернулась в Европу как “Альмагест”, став господствующим трактатом средневековой астрономии на протяжении четырнадцати веков.

В античную эпоху были сделаны также важные шаги в применении математики к описанию физических процессов. Особенно характерны в этом отношении работы великих эллинских ученых так называемого александрийского периода (около 300-600 гг. н э.) - Архимеда, Евклида, Герона, Паппа, Птолемея и др. В этот период возникают первые теоретические знания механики, среди которых в первую очередь следует выделить разработку Архимедом начал статики и гидростатики (развитая им теория центра тяжести, теория рычага, открытие основного закона гидростатики и разработка проблем устойчивости и равновесия плавающих тел и т.д.). В александрийской науке был сформулирован и решен ряд задач, связанных с применением геометрической статики к равновесию и движению грузов к наклонной плоскости (Герон, Папп); были доказаны теоремы об объемах тел вращения (Папп), открыты основные законы геометрической оптики - закон прямолинейного распространения света, закон отражения (Евклид, Архимед).

Все эти знания можно расценить как первые теоретические модели и законы механики, полученные с применением математического доказательства. В александрийской науке уже встречаются изложения знаний, не привязанные жестко к натурфилософским схемам и претендующие на самостоятельную значимость.

До рождения теоретического естествознания как особой, самостоятельной и самоценной области человеческого познания и деятельности оставался один шаг. Оставалось соединить математическое описание и систематическое выдвижение тех или иных теоретических предположений с экспериментальным исследованием природы. Но именно этого последнего шага античная наука сделать не смогла.

Она не смогла развить теоретического естествознания и его технологических применений. Причину этому большинство исследователей видят в рабовладении - использовании рабов в функции орудий при решении тех или иных технических задач. Дешевый труд рабов не создавал необходимых стимулов для развития солидной техники и технологии, а следовательно, и обслуживающих ее естественнонаучных и инженерных знаний[17].

Характеристики

Тип файла
Документ
Размер
1,19 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6850
Авторов
на СтудИзбе
273
Средний доход
с одного платного файла
Обучение Подробнее