142600 (691428), страница 8

Файл №691428 142600 (Статистический анализ и прогнозирование безработицы) 8 страница142600 (691428) страница 82016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

Проводим оценку существенности связи с помощью коэффициента множественной корреляции:

где: ryx1 – коэффициент корреляции между y и x1; ryx3 – коэффициент корреляции между y и x3; rx1x3 – коэффициент корреляции между x1 и x3.

Подставив имеющиеся данные в формулу и получим: R=0,717

Так как R < 0,8, то связь признаем не существенной, но, тем не менее, в учебных целях, проводим дальнейшее исследование.

У равнение прямой имеет следующий вид: ŷ = a + bx1 + cx3

Для определения параметров уравнения необходимо решить систему:

Решив систему, получим уравнение: Ŷ=14,72+0,00023 x1+0,00086x3

Для данного уравнения найдем ошибку аппроксимации:

А> 5%, то данную модель нельзя использовать на практике.

Проведем оценку параметров на типичность. Рассчитаем значения величин:

S2=28,039

ma=1,415; mb=0,023; mс=0,8404;

ta=10,403; tb=0,01; tc=0,001.

Сравним полученные выше значения t для α = 0,05 и числа степеней свободы (n-2) с теоретическим значением t-критерия Стьюдента, который tтеор = 2,1788. Расчетные значения tb и tс < tтеор, значит данные параметры не значимы и данное уравнение не используется для прогнозирования.

Далее оценим существенность совокупного коэффициента множественной корреляции на основе F-критерия Фишера по формуле:


где: n – число уровней ряда; к – число параметров; R – коэффициент множественной корреляции.

После расчета получаем: F=5,819

Сравним Fрасч с Fтеор для числа степеней свободы U1 = 9 и U2 = 2, видим, что 0,045 < 19,40, то есть Fрасч < Fтеор - связь признаётся не существенной, то есть корреляция между факторами x1, x3 и у не существенна.

3.4. Прогнозирование безработицы

Определив наличие тенденции, можно начать прогнозирование. Прогнозирование проводится следующими методами:

1)на основе средних показателей динамики;

2)на основе экстраполяции тренда;

3)на основе скользящих и экспоненциальных средних.

I. Сначала проведем прогнозирование методом среднего абсолютного прироста. Для этого надо проверить выполняются ли предпосылки. Вычисляем данные для подстановки в формулы предпосылок:

ρ2= 310,14

σ2ост = 250,11

т.к. σ2ост< ρ2 , условие выполняется, значит можно строить прогноз на основе среднего абсолютного прироста. Вычислим средний абсолютный прирост:

, где yp- прогнозируемый уровень; yb- конечный уровень ряда как наиболее близкий к прогнозируемому; L-период упреждения; ∆- средний абс.прирост.

Подставляем значения yb=54,13 L=1 ∆=1,91 в функцию прогноза:

yp =54,13+1,91*1=56,04 – прогноз на 2006г.

yp =54,13+1,91*2=57,95 – прогноз на 2007г.

Фактически численность безработных в 2006г. составила 60,6 тыс.чел.

Вычислим ошибку прогноза для сравнения методов прогнозирования на точность: 60,6-56,04=4,56 тыс.чел.

Теперь составим прогноз методом среднего темпа роста. Вычислим средний темп роста: yp= ybL

=1,0096

Подставим это значение в формулу и составим прогноз на 2006г.:

yp=54,13*1,00961=54,65

Вычислим ошибку: 60,6-54,65=5,95тыс.чел.

Так как ошибка при прогнозировании методом среднего абсолютного прироста меньше ошибки при прогнозировании методом среднего темпа роста, то можно сделать вывод, что прогнозирование первым методом дает более точные результаты. Поэтому мы оставляем для анализа результатов данные прогноза полученные методом среднего абсолютного прироста. Составим диаграмму при прогнозировании методом абсолютного прироста.

Рис. 4.Численность безработных при прогнозировании «методом абсолютного прироста»

II. Следующий способ прогнозирования - методом экстраполяции тренда.

Ранее по аналитическому выравниванию нашли уравнение параболы второй степени: у =13,37+13,94t-1,0017t2

Сделаем прогноз на 2006г., примем t=7, т.к. нумерация дат определена с середины ряда, т.е. ∑t=0.

уp=13,37+13,94*7-1,0017*49=60,87 – прогноз на 2006г.

Определим доверительный интервал прогноза, в основе которого лежит показатель колеблемости уровней ряда. Колеблемость уровней ряда определяется по формуле: Sy =

Sy=91,44

Интервал определяется с помощью ошибки прогноза Sp= Sy*Q, где Q- поправочный коэффициент, учитывающий период упреждения.

Q= = 1,2127

Тогда ошибка прогноза: Sp=91,44*1,2127=110,886

Соответственно доверительный интервал прогноза составит: уp+t*Sp, где t-табличное значение t-критерия Стьюдента. При ά=0,05 и числе степеней свободы n-3= 11 t=2,2010.

уp+2,2010*110,886 или 61,87 +244,061, т.е. -182,2< уp <305,93

Значит, прогнозная величина находится в данном интервале.

Рис.5. Численность безработных при прогнозировании «методом экстраполяции тренда»

III. Метод скользящих и экспоненциальных средних.

Ранее в своих расчетах я определила, что ряд не содержит периодических колебаний и отсутствуют трендовая компонента Т и циклическая (сезонная) компонента S. Поэтому нет необходимости использовать метод скользящих средних.

Метод экспоненциальных средних.

Экспоненциальное сглаживание является простым методом, который в ряде наблюдений позволяет строить приемлемые прогнозы наблюдаемых временных рядов. Суть метода в том, что исходный ряд x(t) сглаживается с некоторыми экспоненциальными весами, образуется новый временной ряд S(t) (с меньшим уровнем шума), поведение которого можно прогнозировать.

Веса в экспоненциальных средних устанавливаются в виде коэффициентов ά(|ά|<1). В качестве весов используется ряд:

ά; ά(1- ά); ά(1- ά)2; ά(1- ά)3 и т.д.

Экспоненциальная средняя определяется по формуле:

где Qt – экспоненциальная средняя (сглаженное значение уровня ряда) на момент t; ά- вес текущего наблюдения при расчете экспонен. средней; yt –фактический уровень ряда; Qt-1-экспонен. средняя предыдущего периода.

Каждый новый прогноз основывается на предыдущем прогнозе:

St= St-1+ά(yt -1- St-1),

где St- прогноз для периода t; St-1-прогноз предыдущего периода; ά- сглаживающая константа; yt -1- предыдущий уровень.

Например, St=29,3+0,5*(29,25-29,3)=29,275.

При прогнозе учитывается ошибка предыдущего прогноза, т.е. каждый новый прогноз St получается в результате корректировки предыдущего прогноза с учетом ошибки.

Таблица 12. Расчет прогноза и ошибки.

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

yt

29,3

29,25

48,03

60,06

66,39

96,26

93,59

84,74

92,91

81,26

69,73

76,85

67,9

54,13

-

прогноз

-

29,3

29,28

38,65

49,36

57,87

77,07

85,33

85,03

88,97

85,12

77,42

77,14

72,52

60,32

ошибка

-

-0,05

18,76

21,41

17,03

38,39

16,52

-0,59

7,876

-7,71

-15,4

-0,57

-9,24

-18,4

-

Рис. 6. Экспоненциальное сглаживание.

При прогнозировании могут использоваться экспоненциальные средние более высоких порядков, полученные путем многократного сглаживания. Экспоненциальная средняя К-го порядка:

Qt(к) = ά Qt(к-1) +(1- ά) Qt-1(к)

Экспоненциальные средние 2-го, 3-го порядка применяются в адаптивном прогнозировании по полиномиальным моделям. Для прогноза использован линейный тренд: y=a+bt. Его параметры связаны с экспоненциальными средними 1-го (Qt(1)) и 2-го (Qt(2)) порядков:

соответственно:

Необходимо задать начальные условия Qt-1к:

Линейный тренд: уt=49,25+2,49t

Параметр сглаживания ά определим: ά=2/(n+1).

Так как n=14, то ά=2/(14+1)=0,13.

Соответственно (1- ά)/ά=(1-0,13)/0,13=6,69, ά/(1- ά)=0,13/(1-0,13)=0,15.

Начальные условия для экспоненциального сглаживания:

Qо(1)=а-6,69*b=49,25-6,69*2,49=32,59

Qo(2)=а-2*6,69*b=49,25-2*6,69*2,49=15,93

Экспоненциальные средние Qt(1) и Qt(2) составят:

Qt(1)= άyt+(1- ά) Qt-1(1)=0,13*84,11+(1-0,13)*32,59=39,28, где yt=yt=n ;Qt-1(1)= Qо(1)

Qt(2)= άQt(1)+(1- ά) Qt-1(2)=0,13*39,28+(1-0,13)*15,93=18,97, где Qt-1(2)= Qo(2)

Тогда скорректированные параметры линейного тренда составят:

2*39,28-18,97=59,59

=0,15*(39,28-18,97)=3,0465

Прогноз производим по модели: , где l-период упреждения.

Тогда при l=1 прогноз на 2006г. составит: уp=59,59+3,0465*1 =60,6т.ч.

Соответственно при прогнозе на 2007г. берем l=2: уp=59,59+3,0465*2=65,683.

Таким образом, по результатам проведенного анализа следует, что численность безработных в 2006 году возрастет по сравнению с 2005г. на 6,5 тыс.чел. или 12% и составит 60,6 тыс.чел., а в 2007г. возрастет на 11,55 тыс.чел. и составит 65,68 тыс.человек.

3.5. Анализ динамики уровня безработицы

1. Расчет аналитических (∆у, Тр, Тпр, |%|) и средних показателей рядов динамики.

Таблица 1. Расчетная таблица для ∆у, Тр, Тпр,|%|.

год

уровень
безр-цы %

абс прирост

коэф-ты роста %

коэф-ты прироста %

абс знач-е
1% прироста

базис

цепн

базис

цепн

базис

цепн

1992

5,8

1993

5,9

0,10

0,1

1,017

1,017

0,017

0,017

580

1994

9,8

4,00

3,9

1,6897

1,661

0,6897

0,661

590

1995

12,7

6,90

2,9

2,1897

1,296

1,1897

0,296

980

1996

14,9

9,10

2,2

2,569

1,173

1,569

0,173

1270

1997

22

16,20

7,1

3,793

1,477

2,793

0,477

1490

1998

22,2

16,40

0,2

3,828

1,009

2,828

0,009

2200

1999

17,7

11,90

-4,5

3,052

0,797

2,052

-0,203

2220

2000

19,1

13,30

1,4

3,293

1,079

2,293

0,079

1770

2001

18,4

12,60

-0,7

3,172

0,963

2,172

-0,0367

1910

2002

15,4

9,60

-3,0

2,655

0,837

1,655

-0,163

1840

2003

16,9

11,10

1,5

2,914

1,097

1,914

0,097

1540

2004

15,3

9,50

-1,6

2,638

0,9053

1,6379

-0,095

1690

2005

12

6,20

-3,3

2,069

0,784

1,069

-0,216

1530

итого

208,1

6,2

Максимальное значение абсолютного прироста (по цепной системе) зафиксировано в 1997 году (7,1%), минимальное значение - в 1999 году(-4,5%). Максимальное значение абсолютного прироста по базисной системе составило 16,4% в 1998 году, минимальное – 0,1 в 1993 году. В общем абсолютный прирост уровня безработицы по цепной, так и по базисной системам с 1992 по 1998г увеличивается, а с 1998г уменьшается. Это объясняется, прежде всего, неравномерностью освоения инвестиций по отношения к периоду финансового года, что характеризует большой поток инвестиций на завершение начатых проектов в конце года, и относительно небольшой поток их в течение остального времени.

Коэффициенты роста и прироста, как по базисной, так и по цепным системам также сначала увеличиваются, а потом уменьшаются. Максимальный коэффициент роста как по цепной зафиксирован в 1994г., по базисной в 1998г.- 3,828. Минимальное значение коэффициента роста по цепной системе принимает в 2005 году и составляет 0,784, а по базисной системе – в 1993 году и составляет 1,017.

Коэффициент прироста достигает своего максимального значения по базисным системам в 1993г., и составляет - 0,017, по цепной системе в 1998г. (2,828). Коэффициент прироста достигает своего минимального значения: по цепной системе в 1998г., и составляет - -0,216; по базисной системе -2,828 в 1998 года.

Так как темпы роста и прироста зависят от коэффициентов роста и прироста, то их максимальные значения будут также находиться по цепной системе в 1994 г., по базисной в 1998г. Максимальное значение темпа роста по цепной системе составляет 166,1%, по базовой - 382,76 %, минимальное - 78,43 % и 101,72 % соответственно. Максимальное значение темпа прироста по цепной системе составляет 66,102%, по базовой - 282,76%, минимальное соответственно - -21,57% и 1,724%.

Рассчитаем среднегодовой уровень численности безработных:

У=280,1/14=20,01%, т.е. за период 1992-2005гг. ежегодно уровень численности безработных составила 20,01%.

Средний абсолютный прирост:

Равен ∆=6,2/13=0,48%, т.е. за период с 1992-2005гг. в среднем ежегодно абсолют. прирост уровня численности безработных составил 0,48%.

Средний коэффициент роста:

Тр=1,042 или 104,2% - это говорит о том, что с 1992-2005гг. в среднем ежегодно темп роста безработных составил 104,2%.

Средний темп прироста:

Тпр = 104,2%-100%= 4,2% - с 1992-2005гг. в среднем темп прироста достигал 4,2%.

2. Определение наличия тенденции.

Выдвигаем гипотезу Н0 об отсутствии тенденции, проверка осуществляется на основе кумулятивного t-критерия Стьюдента. Расчетное значение определяется по формуле:

, где

Таблица 2. Для расчёта характеристик S2 и Z2.

год

уровень
безр-цы %

S2

Z2

1992

5,8

82,16128

82,16

1993

5,9

80,35842

162,5197

1994

9,8

25,64699

188,1667

1995

12,7

4,684133

192,8508

1996

14,9

0,001276

192,8521

1997

22

50,91842

243,7705

1998

22,2

53,8127

297,5832

1999

17,7

8,041276

305,6245

2000

19,1

17,94128

323,5658

2001

18,4

12,50128

336,067

2002

15,4

0,28699

336,354

2003

16,9

4,144133

340,4982

2004

15,3

0,189847

340,688

2005

12

8,204133

348,8921

итого

208,1

348,8921

3691,593

Tp= 10,581; tp=4,26

Табличное значение t-критерия Стьюдента для числа степеней свободы df=(n-2)=12 и вероятности 95% составляет 2,1788. tp >tтабл → гипотеза Н0 о равенстве средних отвергается, расхождение между средними существенно значимо и не случайно, то в ряде динамики существует тенденция средней и, следовательно в исходном временном ряду тенденция имеется.

3. Метод аналитического выравнивания и определение параметров.

Рис.7. График общего уровня безработицы.

По графику видно, что временной ряд характеризуется сначала тенденцией возрастания до 1998г., а затем убывания. Можно предположить, что данный ряд, вероятно, развивается согласно полиномиальной функции, которая описывается параболой второго порядка:

Таблица 3. Расчет параметров тренда.

год

тыс.чел.

t

t2

t3

t4

yt

yt2

1992

5,8

1

1

1

1

5,8

5,8

1993

5,9

2

4

8

16

11,8

23,6

1994

9,8

3

9

27

81

29,4

88,2

1995

12,7

4

16

64

256

50,8

203,2

1996

14,9

5

25

125

625

74,5

372,5

1997

22

6

36

216

1296

132

792

1998

22,2

7

49

343

2401

155,4

1087,8

1999

17,7

8

64

512

4096

141,6

1132,8

2000

19,1

9

81

729

6561

171,9

1547,1

2001

18,4

10

100

1000

10000

184

1840

2002

15,4

11

121

1331

14641

169,4

1863,4

2003

16,9

12

144

1728

20736

202,8

2433,6

2004

15,3

13

169

2197

28561

198,9

2585,7

2005

12

14

196

2744

38416

168

2352

итого

208,1

105

1015

11025

127687

1696,3

16327,7

Подставим значения из таблицы 3 и решим систему. Получим параметры уравнения тренда:

а=2,46; b=3,545; c=-0,205.

Соответственно уравнение тренда составит: =2,46+3,545t-0,205

Оценим параметры уравнения на типичность. Найдем S2- остаточная уточнённая дисперсия; mа, mв, mr - ошибки по параметрам. Получим следующие данные:

S2=6,29; mа=0,671; mв=0,028; mr=0,173

О ценим значимость параметров модели по критерию Стьюдента. Предположим, что параметры и коэффициент корреляции стат. значимы. Найдем расчётные значения t-критерия Стьюдента для параметров:

ta=3,669; tb=126,61; tс=-7,32; tr=4,636.

Сравним полученное значение с табличным t-критерием Стьюдента. tтабличное при Р=0,05 и (n-2)= 2,1788. Так как tрасчётное > tтабличное , то параметры а, b и r уравнения типичны (значимы). Так как tрасчётное < tтабличное , то параметр с незначим.

Оценим уравнение в целом по критерию Фишера, выдвигаем гипотезу Н0:о том, что коэффициент регрессии равен нулю.

Fф=Dфакт/Dост=348,89/6,29=55,47.

FT(v1=1;v2=12)=4,75.

Т.к. Fф > FT при 5%-ном уровне значимости гипотеза Н0 отвергается, уравнение в целом стат. значимо. Индекс детерминации здесь составляет 0,642. Следовательно, уравнением регрессии объясняется 64,2% дисперсии результативного признака, а на долю прочих факторов приходится 35,8% её дисперсии (т.е. остаточная дисперсия).

3.6. Многофакторный корреляционно - регрессионный анализ

Таблица 4. Исходные данные.

год

уровень
безраб-цы

доход
на душу
насел-я

индекс
потребит
цен

индекс
ВРП

1995

12,7

83,7

278,2

86,2

1996

14,9

89,6

235,2

93,5

1997

21,3

130,5

124

102,2

1998

22,2

72,2

107,9

94,2

1999

17,3

99,9

163,7

108

2000

19,1

111,2

144,6

104,9

2001

18,4

110,2

120,3

106,4

2002

15,4

121,5

110,6

106,4

2003

16,8

104,5

114,2

106,7

2004

15,3

104,4

114,7

103,7

2005

12

111,3

115,1

104,8

итого

185,4

1139

1628,5

1117

средн

16,86

103,55

148,046

101,55

Для анализа необходимо из нескольких факторов произвести предварительный отбор факторов для регрессионной модели. Сделаем это по итогам расчета коэффициента корреляции, т.е. возьмем те факторы, связь которых с результативным признаком будет выражена в большей степени. Рассмотрим следующие факторы:

- Доход на душу населения – x1 (%)

- Индекс потребительских цен – x2 (%)

- Индекс ВРП - x3 (%)

Рассчитаем коэффициент корреляции для линейной связи и для имеющихся факторов - x1, x2 и x3:

Для фактора x1 получаем коэффициент корреляции: r1= 0,042

Для фактора x2 получаем коэффициент корреляции: r2 =0,437

Для фактора x3 получаем коэффициент корреляции: r3=0,151

По полученным данным можно сделать вывод о том, что:

1)Связь между x1 и y отсутствует, так как коэффициент корреляции меньше 0,15. Таким образом, возникает необходимость исключить данный фактор из дальнейших исследований.

2)Связь между x2 и y прямая (так как коэффициент корреляции положительный) и умеренная, так как она находится между 0,41 и 0,50. Поэтому, будем использовать фактор в дальнейших расчётах.

3)Связь между x3 и y прямая (так как коэффициент корреляции положительный) и слабая. Тем не менее, будем использовать фактор в дальнейших расчетах.

Характеристики

Тип файла
Документ
Размер
4,16 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее