126258 (690984), страница 2

Файл №690984 126258 (Разработка технологического процесса получения биоразлагаемых полимеров на основе молочной кислоты) 2 страница126258 (690984) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Перекристаллизованный и высушенный оптически активный лактид в дальнейшем использовали в качестве исходного продукта при получении полимолочной кислоты в присутствии октоата олова как катализатора полимеризации.

Следует отметить, что механизм полимеризации лактида в присутствии октоата олова, несмотря на длительные исследования, не совсем ясен. При поликонденсации лактида в присутствии металлосодержащих катализаторов скорость поликонденсации зависит не только от природы основного катализатора (в рассматриваемом случае диоктоата олова), но и от присутствующих в системе следов примесей - сокатализаторов (вода, спирты, следы исходной молочной кислоты). Следы исходной молочной кислоты также способны участвовать в процессе координации с образованием шестичленного промежуточного цикла, состоящего из лактида, металлоорганического катализатора и соответствующего гидроксилсодержащего производного [15, 16].

Исходя из сказанного, открытие лактидного кольца и его полимеризация в полимолочную кислоту в присутствии диоктоата олова и протоносодержащего соединения можно представить следующим образом:

Однако не известно, как количество катализатора и температурно-временные параметры процесса полимеризации влияют на величину молекулярной массы образующейся полимолочной кислоты.

С целью определения влияния количества катализатора на ход полимеризации исследовали системы с содержанием 0,05; 0,1; 0,3; 0,6; 1,0 и 1,5 % октоата олова (по отношению к лактиду).

На первом этапе приготовления смеси лактид-катализатор систему нагревали до жидкого состояния и, тщательно перемешивая, получали однородную массу, которую загружали в ампулы. Приготовленные образцы выдерживали при температуре 120 - 150 Сив процессе прогрева через определенные промежутки времени отбирали пробы и растворяли содержимое в хлороформе. Затем для отделения высокомолекулярных фракций полимолочной кислоты от низкомолекулярных проводили высаждение метанолом и полученный полимер сушили до постоянной массы при 65°С. С увеличением количества катализатора от 0,3 до 1,5 % наблюдалось резкое снижение образования высокомолекулярной полимолочной кислоты. В среднем оно составляло 15 - 30 % в зависимости от концентрации катализатора, в то время как в присутствии 0,05 и 0,1 % высокомолекулярная фракция составляла 70 - 75 %.

Что касается влияния временного фактора полимеризации лактида в присутствии 0,05 и 0,1 % октоата олова при 150°С, то заметного отличия в температуре плавления полученной полимолочной кислоты не наблюдалось: она составляла 152 - 158°С. Молекулярная масса полученных образцов полимолочной кислоты, определенная методом гель-проникающей хроматографии, находилась в пределах от 15000 до 36000.

Анализ и сравнение снятых ИК-спектров синтезированной полимолочной кислоты показали, что все образцы по строению близки друг к другу. В ИК-спектрах наблюдались характерные полосы поглощения сложноэфирной группировки около 1764 см-' - валентные колебания С=0-группы, а в области 1300 - 1050 см1 проявлялись ассиметричные и симметричные колебания С-О-С-групп. Валентные колебания алифатических С-Н-групп отмечались в области 3000 - 2850 см1.

Выделенная полимолочная кислота представляла собой белый сыпучий порошок, из которого после модификации и пластификации были изготовлены пленки и прутки, обладающие высокими физико-механическими и эксплуатационными свойствами.

Таким образом, исходя из выполненного объема исследований и полученных результатов по процессу синтеза полимолочной кислоты из глюкозы, технологическую схему производства биоразлагаемого полимера на основе молочной кислоты можно представить следующими основными стадиями:

ферментация глюкозы до молочной кислоты;

выделение и очистка молочной кислоты;

олигомеризация молочной кислоты;

образование лактида;

получение полимолочной кислоты.

Решение вопросов оптимизации технологического процесса получения полимолочной кислоты с достижением максимальных показателей конверсии на каждой стадии позволит обеспечить высокий выход товарного продукта с минимальным количеством сточных вод и твердых отходов. Получаемый полимерный продукт должен обладать не только высокими потребительскими свойствами и биоразлагаемостью, но и приближаться по стоимости к упаковке, выпускаемой в настоящее время на основе многотоннажных бионеразлагаемых полимеров.

Определенность конечной цели и понимание проблемы в научном плане по созданию высокопроизводительного процесса получения биоразлагаемых пластиков требует прежде всего решения вопросов совершенствования используемых штаммов, каталитических систем стадии олигомеризации, лактидизации и полимеризации с получением полимолочной кислоты с заданной молекулярной массой. В производственном плане требуется решить задачи современного аппаратурно-технологического оформления процесса на всех стадиях, что в перспективе обеспечит создание высокотехнологичного конкурентоспособного производства биоразлагаемых пластиков на основе полимолочной кислоты и позволит в значительной степени решить сложные экологические проблемы "полимерного мусора".

Биоразлагаемые полимеры на основе полимолочной кислоты

В настоящее время производство синтетических пластмасс в мире достигло 150 млн. т в год и продолжает расти. Полимерные продукты играют большую роль в промышленности и жизни человека. После использования полимерные промышленные и бытовые отходы попадают в мусорные отвалы. Как быть и что делать с пластмассовым мусором становится глобальной экологической проблемой [1], от решения которой в значительной степени зависит экологическая ситуация в мире.

Для очистки окружающей среды от пластмассовых отходов и снижения антропогенной нагрузки на человека и окружающую среду активно реализуются два основных подхода:

захоронение (хранение отходов на свалках);

утилизация.

Наиболее щадящим способом является утилизация полимерных отходов.

Повторная переработка в некоторой степени решает проблему загрязнения окружающей среды полимерными продуктами. Однако сбор и сортировка полимерных отходов, прежде всего упаковочной тары, приводит к удорожанию получаемых мосле переработки изделий. Кроме того, качество рециклизованного полимера оказывается существенно ниже, чем первичного продукта.

Сжигание и пиролиз, даже при применении методов дожигания и утилизации тепла отходящих газов, также кардинально не улучшают экологическую обстановку.

По мнению специалистов, радикальным решением проблемы "полимерного мусора" является создание и освоение широкой гаммы полимеров, способных при соответствующих условиях биодеградировать на безвредные компоненты [2].

Именно биоразлагаемость высокомолекулярных соединений и будет тем приоритетным направлением, которое позволяет исключить значительное число проблем загрязнения окружающей среды, возникающих при использовании бытовых товаров, а во многих случаях и продукции технического назначения из синтетических полимеров [3].

В настоящее время мировая промышленность в основном ориентирована на использование и переработку практически невозобновляемого углеводородного и каменноугольного сырья. Возможно, эти виды ресурсов будут исчерпаны уже в следующем столетии. Именно поэтому в ряде развитых стран мира проводятся широкие научно-технические исследования по применению растительного возобновляемого сырья для разработки новых видов полимерных материалов. Эти полимеры привлекательны не только с точки зрения используемого для их получения сырья, но и имеющихся у них преимуществ в области утилизации отходов.

Бурное развитие производства таких материалов, первоначально предназначавшихся исключительно для медицинских изделий, позволило разработать подходы к решению глобальной проблемы утилизации твердых полимерных отходов.

К сожалению, в России пока не уделяется должного внимания разработкам такого типа.

Анализ литературных источников в области разработки биоразлагаемых полимеров за последние годы указывает на активное развитие направления производства полимеров на основе гидроксикарбоновых кислот. Столь пристальное внимание к этому классу соединений обусловлено тем, что еще в 1925 г. было установлено, что полигидроксимасляная кислота под воздействием различных видов микроорганизмов разлагается до С02 и Н20. Полиэфиры на основе других гидроксикарбоновых кислот (гликолевой, молочной, валериановой или капроновой) ведут себя аналогично.

Для получения соответствующих полиэфиров указанных кислот используются их димерные производные - гликолиды, лактиды в случае гликолевой и молочной кислот, либо у - или е-лактоны для валериановой и капроновой кислот [4].

Среди биодеградируемых материалов полимолочная кислота, синтезируемая из мономеров, получаемых путем микробиологической переработки растительного сырья (ферментативным брожением декстрозы сахара или мальтозы, сусла зерна или картофеля), занимает лидирующее производство (140 тыс. т в 2002 г.; 250 - в 2005 г., 400 тыс. т в 2007 г.).

Важным достоинством полимолочной кислоты (полилактида) является то, что этот прозрачный, бесцветный термопластичный полимер может быть переработан всеми способами, применяемыми для переработки известных термопластов. Из листов можно термоформовать подносы, тарелки, упаковку для пищевых продуктов, имплантаты для медицины. Он опробован также в качестве полимера для получения волокон, пленок, связующего для целлюлозных нетканых материалов [5]. Несмотря на все перечисленные достоинства полилактида, широкое внедрение его в качестве полимера бытового и технического назначения до последнего времени сдерживается небольшими объемами выпуска, низкой производительностью технологических линий и, как следствие, высокой стоимостью продукции. В связи с этим особое внимание в настоящее время разработчики полиэфиров уделяют вопросам удешевления получаемых биоразлагаемых продуктов за счет создания высокопроизводительных технологических процессов. Активную работу в совершенствовании технологии производства молочной кислоты проводят фирмы Cargill Inc. (США) и PURAC (Испания) [3].

Молочная (2-гидроксипропи-оновая кислота), СН, - СН (ОН) - COOH) существует в L - и D-изомерных формах. Кроме того, существует ее рацемическая форма. Продукт, получаемый в процессах ферментации (брожения), содержит до 99,5 % 1-изо-мера и 0,5 % Д-изомера [6]. Молочная кислота, представляющая собой бесцветные кристаллы, гигроскопична, легко образует циклический димер - лактид (рис.1).

Лактид также существует в виде оптически активных L - и /) - форм и неактивного рацемата и может полимеризоваться с образованием высокомолекулярных полимеров. Однако высокомолекулярные полилактиды, полученные из оптически неактивных или оптически малоактивных лактидов, вследствие случайной ориентации заместителей в цепи не обнаруживают кристалличности. Они отличаются высокой растворимостью в различных органических растворителях/ низкой температурой плавления, хорошей термопластичностью и не используются для получения волокон. Изготовление высокомолекулярных волокнообразующих полилактидов возможно лишь из оптически активных мономеров.

Поли-Х-лактид (PLA) - полимер с высокой степенью кристалличности, достигающей 70 - 80 %, со средней плотностью 1,270 г/см1 при плотности аморфных и кристаллических областей 1,248 и 1,290 г/см3 соответственно [6], с температурой стеклования 48,5°С. Термоокислительная деструкция поли-i-лактида начинается при 240 - 250 "С. Он растворим во многих органических растворителях, таких, как хлорированные алифатические и ароматические углеводороды, ацетонитрил, диок-сан, тетрагидрофуран. Полилактид не растворим в воде и в водно-спиртовых смесях, не токсичен и не вызывает тканевой реакции отторжения [7J. Полилактид относится к алифатическим полиэфирам и к биосовместимым термопластикам.

Наиболее часто используется первый метод вследствие более высокой чистоты исходного димера.

В основе процесса лежит получение дилактида, а затем его полимеризация. Первичная стадия синтеза включает получение предконденсата, который затем термически деполимеризуется до дилактида. Свойства результирующего волокнообразующего полилактида зависят в большой степени от чистоты дилактидного мономера, что требует его тщательной очистки. Полимеризация дилактида происходит с раскрытием цикла, и образующийся линейный полилактид содержит примерно 5 % непрореагировавшего мономера. Такой полимер может подвергаться гидролизу, если его использовать для дальнейшей переработки в волокна или изделия. Поэтому PLA подвергается обязательной очистке от мономера.

Значительный интерес для получения биоразлагаемых полимеров представляют сополимеры молочной кислоты, поскольку появляется возможность создания полимеров с регулируемой скоростью биодеструкции. Особенно это важно для полимеров и волокон на их основе, используемых в медицине.

Характеристики

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6549
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее