125394 (690517), страница 2
Текст из файла (страница 2)
(0С), (23)
где tПК – конечная температура поверхности металла, 0С (см. [1]).
Температура газов во втором периоде t2Г при трехступенчатом режиме нагрева определяется из условий службы огнеупоров и других соображений. Величина t2Г обычно равна (по формуле 24):
(0С) (24)
Температуры поверхности металла в конце промежуточных этапов tП и температуры центра tЦ предварительно задаются на основе практических данных, а затем уточняются расчетом.
3.2 Время нагрева металла
Изделие является достаточно массивным, поэтому примем, что температурный режим состоит из двух периодов: нагрева и выдержки. В период нагрева температура поверхности изделия повышается от
до
, температура дымовых газов в печи tГ меняется от 700 ºС до значения, вычисленного (по формуле 25):
(0С) (25)
Температура футеровки находится (по формуле 26):
(0С) (26)
Период нагрева разобьём на три интервала, в пределах которых температуру продуктов сгорания будем считать постоянной.
В период нагрева тепловая нагрузка печи (расход топлива) неизменна. В период выдержки тепловая нагрузка печи снижается так, что температура дымовых газов
, металла
и футеровки
остаются неизменными.
Площадь тепловоспринимающей поверхности металла (по формуле 27):
(м2) (27)
Площадь внутренней поверхности рабочего пространства печи (за вычетом площади, занятой металлом) находится (по формуле 28):
(м2) (28)
Степень развития кладки находится (по формуле 29):
(29)
Эффективная длина луча находится (по формуле 30):
(м) (30)
3.2.1 Период нагрева
3.2.1.1 Первый интервал
Средние за интервал температуры вычисляются путем среднего арифметического между начальной температурой интервала и конечной равны (см. [1]):
Парциальные давления излучающих компонентов продуктов сгорания равны (см. [1]):
(кПа), (сюда включено
);
(кПа).
Произведения парциальных давлений на эффективную длину луча
равны (см. [1]):
(кПа∙м);
(кПа∙м).
По номограммам (см. [1]) при
находим:
Плотность потока результирующего излучения металла находим по формуле, принимая степень черноты металла равной
и шамотной кладки
, находим значения комплексов.
Находим значение комплекса М (по формуле 31):
(31)
Находим значение комплекса А (по формуле 32):
(32)
Находим значение комплекса В (по формуле 33):
(33)
Находим значение результирующего потока энергии (по формуле 34):
(34)
Коэффициент теплоотдачи излучением в 1-м интервале периода нагрева находится следующим образом (формула 35):
(35)
Принимая значение коэффициента теплоотдачи конвекцией равным
Вт/м2∙К, находим величину суммарного коэффициента теплоотдачи (по формуле 36):
(36)
Заготовку прямоугольного сечения с b/h < 1,8 можно представить в виде эквивалентного цилиндра с диаметром, вычисляемым (по формуле 37)
(м) (37)
Для заготовок, у которых отношение длины к эквивалентному диаметру
, можно пренебречь передачей тепла через торцевые стенки.
В случае четырехстороннего нагрева коэффициент несимметричности нагрева равен
(см. [1]) расчётная толщина вычисляется (по формуле 38):
(м) (38)
где
– коэффициент несимметричности нагрева;
– геометрическая толщина изделия, м.
Критерий Био находится (по формуле 39):
(39)
где
(Вт/м2∙К) (см. [1])при
Температурный критерий находится (по формуле 40):
(40)
По номограмме для поверхности цилиндра (см. [1]) находим значение критерия Фурье:
Продолжительность 1-го интервала периода нагрева (по формуле 41):
(с) (41)
где а =
м2/с – коэффициент температуропроводности стали при
(см. [1]).
Найдем температуру в середине заготовки в конце 1-го интервала периода нагрева. Для этого по номограмме для центра цилиндра (см. [1]) при значениях
находим
. Температура центра находится (по формуле 42):
. (42)
Среднюю по массе температуру заготовки в конце 1-го (в начале 2-го) интервала периода нагрева находим (по формуле 43):
. (43)
3.2.1.2 Второй интервал
Средние за интервал температуры продуктов сгорания и поверхностей металла и кладки равны (см. [1]):
Произведения парциальных давлений на эффективную длину луча (см. [1]) равны:
(кПа∙м);
(кПа∙м).
По номограммам (см. [1]) при
находим:
Находим значение комплекса М (по формуле 31):
Находим значение комплекса А (по формуле 32):
Находим значение комплекса В (по формуле 33):
Находим значение результирующего потока энергии (по формуле 34):
Средний за второй интервал коэффициент теплоотдачи излучением (по формуле 35):
С учетом конвективного теплообмена (по формуле 36):
(Вт/м2∙К)
Значение критерия Био (по формуле 39):
Значения температурного критерия (по формуле 40):
По номограмме (см. [1]) находим, что
.
Продолжительность второго интервала периода нагрева (формула 41):
(с)
Найдем температуру в середине заготовки в конце второго интервала периода нагрева (по формуле 42). Для этого по номограмме для центра цилиндра (см. [1]) при значениях
находим
.
Среднюю по сечению температуру заготовки в конце второго (в начале третьего) интервала периода нагрева находим (по формуле 43):
3.2.1.3 Третий интервал
Средние за интервал температуры продуктов сгорания и поверхностей металла и кладки равны (см. [1]):
Произведения парциальных давлений на эффективную длину луча (см. [1]) равны:
По номограммам (см. [1]) при
находим:
Находим значение комплекса М (по формуле 31):
Находим значение комплекса А (по формуле 32):
Находим значение комплекса В (по формуле 33):
Находим значение результирующего потока энергии (по формуле 34):
Средний за интервал коэффициент теплоотдачи излучением (формула 32):
(Вт/м2∙К)
А с учетом конвективного теплообмена (по формуле 36):
(Вт/м2∙К)
Значение критерия Био (по формуле 39):
;
где λ = 30 (Вт/м К)
Значения температурного критерия (по формуле 40):
По номограмме (см. [1]) определяем
.
Продолжительность третьего интервала периода нагрева (формула 41):
,
где а = 5,83 10-6 м2/с при
1100 0С (см. [1]).
Найдем температуру в середине заготовки в конце 3-го интервала периода нагрева (по формуле 42). Для этого по номограмме для центра цилиндра (см. [1]) при значениях
находим
.
Перепад температур по сечению заготовки в конце периода нагрева (по формуле 43):
Общая продолжительность периода нагрева (по формуле 44):
(44)
Согласно технологической инструкции, время нагрева стали 45 в нагревательном колодце составляет 1,58 часа (см. [3]).
3.2.2 Период выдержки
В течение периода выдержки средняя температура продуктов сгорания равна (см. [1]):
Температура поверхности металла (см. [1]):
Температура кладки (см. [1]):
В конце периода выдержки перепад температур по сечению заготовки
,тогда степень выравнивания рассчитывается (по формуле 45):
(45)
По номограмме (см. [1]) находим значение критерия Фурье для периода выдержки.
Тогда продолжительность периода выдержки (по формуле 46):
(46)
Общее время пребывания металла в печи (по формуле 47):
(47)
4 Футеровка печи
Футеровка печи выполняется, как правило, многослойной: огнеупорный слой и теплоизоляционный. Подину колодцев выкладывают обычно в три слоя: внутренний слой из хромомагнезитного кирпича, средний – шамотный кирпич, внешний теплоизоляционный слой из диатомитового кирпича.
Стена колодцев выполняют трехслойными. Внешний слой – теплоизоляционный, затем слой шамотного кирпича. Внутренний слой в нижней части стен (приблизительно на 1 м высоты) выполняют из хромомагнезита, остальное из динаса.
В настоящее время применяют крышки как с арочной футеровкой, так и с подвесным сводом. И в том, и в другом случае можно применять шамотный кирпич (см. [2]).
Футеровка печи приведена на рисунке 2.
Рисунок 2 – Футеровка печи:
1 – шамотная присыпка;
2 – динас;
3 – хромомагнезит
Выбрана следующая кладка. Стены печи состоят из слоя динаса толщиной
= 0,23 м и слоя хромомагнезита толщиной
= 0,35 м.
Суммарная толщина кладки равна 0,57 м, что не превышает максимально допустимые 0,6 м.
5 Тепловой баланс печи
Тепловой баланс рабочего пространства печи представляет собой уравнение, связывающее приход и расход тепла. При проектировании печи тепловой баланс составляют с целью определения расхода топлива (в топливных печах) или мощности (в электрических печах). В этом случае статьи расхода и прихода тепла определяют расчетным путем.
Тепловой баланс действующей печи составляют с целью определения технико-экономических показателей ее работы. В этом случае статьи баланса можно определять как экспериментально, так и расчетом.
Для печей непрерывного действия тепловой баланс обычно составляют на единицу времени, для печей периодического действия – на время цикла (или отдельного периода обработки).
5.1 Приход тепла:















