125220 (690344), страница 3
Текст из файла (страница 3)
dа2= d2+2m=395 + 2 · 5=405 мм
Диаметр окружностей впадин зубьев шестерни и колеса:
df1= d1 - 2 · 1,25 · m=105 - 2 · 1,25 ·5 =92,5 мм
df2= d2 - 2 · 1,25 · m =395 - 2 · 1,25 ·5 =382,5 мм
Ширина шестерни:
b1= b2 · 1,07 = 80 · 1,07 = 86 мм
Окружная скорость колеса:
Результаты расчёта основных параметров передачи представлены в таблице 3.3.2
Таблица 3.3.2
Модуль (мм) | Межосевое расстояние (мм) | Число зубьев | Делительный диаметр (мм) | Ширина (мм) | |
Шестерня | 5 | 250 | 21 | 105 | 86 |
Колесо | 79 | 395 | 80 |
3.4 Определение сил в зацеплении
Быстроходная ступень:
Окружная сила в зацеплении:
Радиальная сила в зацеплении:
Fr=Ft·tg20º=5759· tg20º=2096 H
где α = 20º - стандартный угол.
Результаты расчёта представлены в таблице 3.4 1
Таблица 3.4.1
Окружная сила (Н) | Радиальная сила (Н) | Осевая сила (Н) |
5759 | 2096 | 0 |
Тихоходная ступень:
Окружная сила в зацеплении:
Радиальная сила в зацеплении:
Fr=Ft·tg20º=14881· tg20º=5416 H
где α = 20º - стандартный угол.
Результаты расчёта представлены в таблице 3.4 2
Таблица 3.4.2
Окружная сила (Н) | Радиальная сила (Н) | Осевая сила (Н) |
14881 | 5416 | 0 |
3.5 Проверочный расчёт передачи на контактную усталостную прочность
Быстроходная ступень:
ZБ=9600 МПа1/2
Расчётные контактные напряжения в рамках допускаемых, следовательно, контактная прочность передачи обеспечена.
Тихоходная ступень:
ZБ=9600 МПа1/2
Расчётные контактные напряжения в рамках допускаемых, следовательно, контактная прочность передачи обеспечена.
3.6. Проверочный расчёт передачи на изгибную усталостную прочность
Быстроходная ступень:
Расчётные напряжения изгиба в зубьях колеса:
σF2=KF · Ft · YFS2 · Yβ · Yε/b2m=0,24 · 5759 · 3,59 · 1 · 1/45 · 3=36,7 ≤ [σ] F2
где YFS2=3,59 - коэффициент учитывающий форму зуба и концентрацию напряжений, принимается по таблице зависит от количества зубьев
KF = KFV. KFβ. KFα=1,09.0,188.1,18 =0,24- коэффициент нагрузки
Yβ =1 - коэффициент учитывающий угол наклона зуба;
Yε= 1 - коэффициент учитывающий перекрытие зубьев;
Оба коэффициента (Y) зависят от степени точности (8)
Расчётные напряжения изгиба в зубьях шестерни:
σF1= σF2 · YFS1/ YFS2 = 36,7 · 4,08/ 3,59 = 41,7 ≤ [σ] F1
Расчётные напряжения изгиба меньше допускаемых, следовательно, изгибная прочность шестерни обеспечена.
Тихоходная ступень:
Расчётные напряжения изгиба в зубьях колеса:
σF2=KF · Ft · YFS2 · Yβ · Yε/b2m=0,23 · 14881 · 3,6 · 1 · 1/80 · 5=30,8 ≤ [σ] F2
где YFS2=0,23 - коэффициент учитывающий форму зуба и концентрацию напряжений, принимается по таблице зависит от количества зубьев
KF = KFV. KFβ. KFα=1,03.0,188.1,18 = 0,23- коэффициент нагрузки
Yβ =1 - коэффициент учитывающий угол наклона зуба;
Yε= 1 - коэффициент учитывающий перекрытие зубьев;
Оба коэффициента (Y) зависят от степени точности (8)
Расчётные напряжения изгиба в зубьях шестерни:
σF1= σF2 · YFS1/ YFS2 = 30,8 · 4,08/ 3,6 = 34,9 ≤ [σ] F1
Расчётные напряжения изгиба меньше допускаемых, следовательно, изгибная прочность шестерни обеспечена.
Результаты расчёта передачи на прочность представлены в табл.3.6.1
Таблица 3.6.1
Расчётные напряжения | Допускаемые напряжения | |||||
Быстроходная ступень | Расчёт на контактную усталостную прочность | 864 | 875 | |||
Расчёт на усталостную изгибную прочность | Шестерня | 41,7 | 382 | |||
Колесо | 36,7 | 382 | ||||
Тихоходная ступень | Расчёт на контактную усталостную прочность | 722 | 875 | |||
Расчёт на усталостную изгибную прочность | Шестерня | 34,9 | 382 | |||
Колесо | 30,8 | 382 |
4. Предварительный расчёт валов
4.1 Выбор материала и допускаемых напряжений
Для шестерни ранее принят материал - сталь 40Х.
Для тихоходного вала также принимаем сталь 40Х.
Механические характеристики улучшенной стали 40Х
Предел прочности σв = 800 МПа.
Предел текучести σТ = 640 МПа.
Допускаемые напряжения при расчёте на статическую прочность при коэффициенте запаса
n=1.5 [τ] = 640/1.5 =426 МПа.
4.2 Предварительный расчёт быстроходного вала
Диаметр выходного конца вала:
принимаем стандартное значение d = 40 мм.
Для удобства монтажа деталей вал выполняем ступенчатой конструкции. Диаметр вала под подшипник:
dn=d+2tкон = 40 + 2 · 2,3=44,6 мм
где tкон = 2,3 мм,
принимаем стандартное значение dn = 45 мм.
Диаметр буртика подшипника принимаем с учётом фасок на кольцах подшипника:
dбп = dп+3r = 45 + 3 · 2,5 = 52,5 мм
где r = 2,5 мм
Принимаем dбп = 53 мм.
Длина выходного участка вала:
lm=1, 5 · d= 1,5 · 40 = 60 мм
принимаем lm= 60 мм.
Длина участка вала под подшипник:
lk=1,4 · dn= 1,4 · 45 = 63 мм
принимаем lk=65 мм.
Остальные размеры вала определяются из предварительной прорисовки редуктора.
4.3 Предварительный расчёт промежуточного вала
Диаметр вала под колесо:
принимаем стандартное значение dК = 60 мм.
Диаметр буртика колеса:
dбк=dк+3f= 60 + 3 ·2=66 мм
Диаметр вала под подшипник:
dn = dк+3r = 60 - 3 ·3,5=49,5 мм
принимаем стандартное значение dп= 50 мм.
Диаметр буртика подшипника принимаем с учётом фасок на кольцах подшипника:
dбп = dп+3r = 50 + 3 · 3,5 = 60 мм
4.4 Предварительный расчёт тихоходного вала
Диаметр выходного конца вала:
Для удобства монтажа деталей вал выполняем ступенчатой конструкции. Диаметр вала под подшипник:
dn = d + 2 · tкон = 70 + 2 · 2,5 = 75 мм
где tкон = 2,5 мм.
принимаем стандартное значение dn = 75 мм.
Диаметр буртика подшипника принимаем с учётом фасок на кольцах подшипника:
dбп = dп+3r = 75 + 3 · 3,5 = 85,5 мм
где r = 3,5 мм.
принимаем dбп = 86 мм.
Диаметр участка вала под колесо:
dk=dбп = 86 мм
Диаметр буртика колеса:
dбк=dк+3f= 86 + 3 ·2,5=93,5 мм
где f =2,5 мм.
принимаем dбк= 95 мм.
Длина выходного участка вала:
lм=1,5 · d= 1,5 · 70 = 105 мм
принимаем lм = 105 мм.
Длина участка вала под подшипник:
lk=1,.4 · dn= 1,4 · 85 = 119 мм
принимаем lk = 120 мм.
Остальные размеры вала определяются из предварительной прорисовки редуктора.
Расстояние между деталями передач
Зазоры между колесами и внутренними поверхностями стенок корпуса:
Принимаем а = 12 мм;
Расстояние между дном корпуса и поверхностью колес:
Расстояние между торцовыми поверхностями колес:
Принимаем 6 мм;
где L ≈ 670 мм - расстояние между внешними поверхностями деталей передач, принято из эскизной компоновки редуктора.
5. Выбор муфт
Муфты типа МУВП позволяют смягчать ударные нагрузки и рывки за счёт упругих элементов в составе муфты, кроме того, они допускают некоторые неточности сборки.
Для соединения быстроходного вала редуктора с валом электродвигателя выбираем муфту упругую втулочно-пальцевую (МУВП) ГОСТ 21424-75.
Принимаем муфту МУВП 250-40-1 У3 ГОСТ 21424-93.
Номинальный крутящий момент Мкр., Нм = 250
Частота вращения, об/мин, не более = 4600
Смещение валов, не более:
радиальное = 0,3
угловое = 100
Для соединения тихоходного вала редуктора с валом барабана выбираем муфту упругую втулочно-пальцевую (МУВП) ГОСТ 21424-75.
Принимаем муфту МУВП 4000-70-1 У3 ГОСТ 21424-93.
Номинальный крутящий момент Мкр., Нм = 4000
Частота вращения, об/мин, не более = 1800
Смещение валов, не более:
радиальное = 0,5
угловое = 030
6. Выбор подшипников
6.1. Выбор типа и типоразмера подшипника
Для всех валов принимаем радиальные шариковые однорядные подшипники по ГОСТ 8338-75, такой выбор обосновывается тем, что в прямозубой цилиндрической передаче возникают только радиальные осевые нагрузки, такой тип подшипников обеспечивает нормальную работу вала при действии на него радиальных нагрузок.
Предварительно в качестве опор быстроходного вала принимаем подшипник №309; для промежуточного вала №310; для тихоходного вала №315.
6.2. Выбор схемы установки подшипников
Установка валов не требует достаточно надёжной осевой фиксации из-за отсутствия действия осевой нагрузки. Такую фиксацию обеспечивает схема установки подшипника "враспор". При этом торцы внутренних колец подшипника упираются в буртики выполненные на валу, торцы внешних колец упираются и торцы крышек.
Такая схема установки обеспечивает простоту конструкции, небольшое количество деталей узла, простоту регулировки, которая производится набором прокладок.
Для того чтобы избежать защемления вала в опорах в результате температурных деформаций необходимо предусмотреть зазор между торцом внешнего кольца одного из подшипников и крышкой. После установления нормального температурного режима работы вала зазор исчезает. И в соответствии с рекомендациями примем для обоих валов зазор 0,5 мм.
6.3. Проверка долговечности подшипников тихоходного вала
6.3.1 Составление расчётной схемы и определение реакций в опорах
Для составления расчетной схемы используем эскизы валов и предварительную прорисовку редуктора.
Расчетная схема тихоходного вала представлена на Рис.6.3.1 На тихоходный вал действуют силы в зацеплении. В подшипниковых опорах - А и Б возникают реакции опор. Реакции представлены в виде составляющих на оси координат.
Определяем реакции в опорах А и Б. Расчёт ведём отдельно для плоскости ZOX и плоскости YOX.
Где l1 =126,5 мм; l2 = 70,5 мм l3 = 154 мм - приняты из предварительной прорисовки редуктора.
В связи с возможной неточностью установки валов (перекос, несоосность) на муфте будет действовать дополнительная сила:
Fм =
Составляем уравнения суммы моментов всех сил, относительно точек А и Б