125195 (690335), страница 4
Текст из файла (страница 4)
Определим значения теоретических чисел для каждого интервала и заполним таблицу 11.
Таблица 11 – Значения теоретических чисел для каждого интпрвала
| Функция распределения | 0,050 | 0,148 | 0,286 | 0,443 | 0,598 | 0,732 | 0,835 | 0,907 | 0,951 | 0,977 |
| Теоретическая частота | 5 | 9,86 | 13,78 | 15,74 | 15,45 | 13,38 | 10,34 | 7,16 | 4,48 | 2,53 |
По вычисленным значениям
и
для всех интервалов строят графики
и
, которые приведены в приложениях В и Г.
Результаты выравнивания опытных данных теоретическими законами распределения представим в виде таблицы 12.
Таблица 12 – Результаты выравнивания опытных данных теоретическими законами распределения
| Границы интервала, мм | 0,0220 ... 0,0284 | 0,0284 ... 0,0348 | 0,0348 ... 0,0412 | 0,0412 ... 0,0476 | 0,0476 ... 0,0540 | 0,0540 ... 0,0604 | 0,0604 ... 0,0668 | 0,0668 ... 0,0732 | ||
| Середина интервала, мм | 0,025 | 0,031 | 0,038 | 0,044 | 0,050 | 0,057 | 0,063 | 0,070 | ||
| Опытная частота | 5 | 11 | 17 | 14 | 15,5 | 7,5 | 8 | 12 | ||
| Дифференциальный закон распределения | Опытная вероятность | 0,05 | 0,11 | 0,17 | 0,14 | 0,155 | 0,075 | 0,08 | 0,12 | |
| Теоретическая вероятность | НЗР | 0,044 | 0,076 | 0,117 | 0,149 | 0,162 | 0,149 | 0,117 | 0,076 | |
| ЗРВ | 0,034 | 0,095 | 0,135 | 0,146 | 0,146 | 0,128 | 0,099 | 0,083 | ||
| Интегральный закон распределения | Накопленная опытная вероятность | 0,05 | 0,16 | 0,33 | 0,47 | 0,625 | 0,7 | 0,78 | 0,9 | |
| Функция распределения | НЗР | 0,08 | 0,16 | 0,27 | 0,42 | 0,58 | 0,73 | 0,84 | 0,92 | |
| ЗРВ | 0,050 | 0,148 | 0,286 | 0,443 | 0,598 | 0,732 | 0,835 | 0,907 | ||
| Теоретическая частота | НЗР | 8 | 8 | 11 | 15 | 16 | 15 | 11 | 8 | |
| ЗРВ | 5 | 9,86 | 13,78 | 15,74 | 15,45 | 13,38 | 10,34 | 7,16 | ||
1.7.3 Проверка правдоподобия (сходимости) опытного и теоретического законов распределения
Критерий Пирсона вычисляют по зависимости:
, (17)
где
– опытная частота попадания СВ в i-й интервал статистического ряда (берется из таблицы 4);
n – число интервалов статистического ряда;
– значение функции распределения (интегральной функции) соответственно в конце i-го и
-го интервалов;
– теоретическая частота в i-м интервале статистического ряда.
Делаем проверку для НЗР:
Делаем проверку для ЗРВ:
Значение критерия, вычисленное по зависимости (17) для НЗР
, а для ЗРВ
; число степеней свободы
, где n – число интервалов статистического ряда, а m – число параметров ТЗР (для НЗР и ЗРВ m = 2); приняты уровень значимости (вероятность необоснованного отклонения гипотезы)
. Необходимо выбрать ТЗР, наиболее адекватный распределению статистической информации.
По таблице В.2 приложения В [1]
и k=5 определяем критическое значение
-критерия:
.
Сравниваем
с
. Так как
только для ЗРВ, то делаем заключение о том, что выдвинутая гипотеза о сходимости опытного с теоретическим распределением ЗРВ с вероятностью
не отвергается.
Для принятия окончательного решения определим вероятность подтверждения проверяемых ТЗР. Для этого опять используем таблицу В.2 [1]. Войдя в таблицу по этим значениям с учетом интерполяции определяем, что вероятность подтверждения выдвинутой гипотезы о ЗРВ в данном примере P =19%.
Следовательно, в этой ситуации принимается гипотеза о том, что анализируемая статистическая информация с достаточной степенью достоверности подчиняется закону распределения Вейбулла.
1.8 Интервальная оценка числовых характеристик износов
Закон распределения Вейбулла.
В этом случае доверительные границы определяют по формуле:
, (18)
где
- коэффициенты распределения Вейбулла, и
выбираются из таблицы В.3 приложения В[1];
Следовательно:
- нижняя граница доверительного интервала;
- верхняя граница доверительного интервала.
С вероятностью
можем утверждать, что истинное значение математического ожидания попадет в интервал от 0,0482мм до 0,0540мм.
1.9 Определение относительной ошибки переноса
Более правильно характеризовать точность оценки показателя надежности относительной ошибкой, которая позволяет корректно сравнивать объекты, в том числе и по разнородным показателям.
(19)
где
– верхняя граница изменения среднего значения показателя надежности, установленная с доверительной вероятностью
;
– оценка среднего значения показателя надежности.
Вычислим относительную ошибку переноса:
Максимально допустимая ошибка переноса ограничивается величиной 20%, т.е.
.
1.10 Определение числа годных и требующих восстановления деталей
1) определим допустимые износы анализируемых деталей при их сопряжении с новыми
и бывшими в эксплуатации
деталями.
Для отверстия:
где
– допустимый размер отверстия при сопряжении его с новыми деталями;
– допустимый размер отверстия при сопряжении его с деталями, бывшими в эксплуатации;
– наибольший предельный размер отверстия.
2) вычисленное значение допустимого износа
отверстия отложили по оси абсцисс (Приложение Г). Из него восстановим перпендикуляр до пересечения с теоретической кривой износов
. Полученную точку спроектируем на ось ординат и снять значение вероятности
того, что детали окажутся годными (их восстановление не потребуется), при условии их сборки с новыми сопрягаемыми деталями. При этом число годных деталей
может быть вычислено по зависимости:
(20)
3) выполняя аналогичные графические построения для значения
, определяют число годных деталей при сопряжении их с деталями, бывшими в эксплуатации:
(21)
4) число деталей, требующих восстановления
, определяется как
(22)
5) следует заметить, что большее практическое значение имеют не сами числа
,
,
, а соответствующие коэффициенты, значения которых определяются ниже.
Коэффициент годности анализируемых деталей:
Коэффициент восстановления деталей:
=1-0,53=0,47.
Вывод
По значениям вычисленных коэффициентов можно сделать вывод,что необходимо более тщательно планировать производственную программу ремонтного предприятия по анализируемой детали.











