125195 (690335), страница 4

Файл №690335 125195 (Определение коэффициентов годности и восстановления деталей) 4 страница125195 (690335) страница 42016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Определим значения теоретических чисел для каждого интервала и заполним таблицу 11.

Таблица 11 – Значения теоретических чисел для каждого интпрвала

Функция распределения

0,050

0,148

0,286

0,443

0,598

0,732

0,835

0,907

0,951

0,977

Теоретическая

частота

5

9,86

13,78

15,74

15,45

13,38

10,34

7,16

4,48

2,53

По вычисленным значениям и для всех интервалов строят графики и , которые приведены в приложениях В и Г.

Результаты выравнивания опытных данных теоретическими законами распределения представим в виде таблицы 12.

Таблица 12 – Результаты выравнивания опытных данных теоретическими законами распределения

Границы

интервала,

мм

0,0220

...

0,0284

0,0284

...

0,0348

0,0348

...

0,0412

0,0412

...

0,0476

0,0476

...

0,0540

0,0540

...

0,0604

0,0604

...

0,0668

0,0668

...

0,0732

Середина интервала,

мм

0,025

0,031

0,038

0,044

0,050

0,057

0,063

0,070

Опытная частота

5

11

17

14

15,5

7,5

8

12

Дифференциальный закон

распределения

Опытная вероятность

0,05

0,11

0,17

0,14

0,155

0,075

0,08

0,12

Теоретическая

вероятность

НЗР

0,044

0,076

0,117

0,149

0,162

0,149

0,117

0,076

ЗРВ

0,034

0,095

0,135

0,146

0,146

0,128

0,099

0,083

Интегральный закон

распределения

Накопленная опытная вероятность

0,05

0,16

0,33

0,47

0,625

0,7

0,78

0,9

Функция распределения

НЗР

0,08

0,16

0,27

0,42

0,58

0,73

0,84

0,92

ЗРВ

0,050

0,148

0,286

0,443

0,598

0,732

0,835

0,907

Теоретическая

частота

НЗР

8

8

11

15

16

15

11

8

ЗРВ

5

9,86

13,78

15,74

15,45

13,38

10,34

7,16

1.7.3 Проверка правдоподобия (сходимости) опытного и теоретического законов распределения

Критерий Пирсона вычисляют по зависимости:

, (17)

где – опытная частота попадания СВ в i-й интервал статистического ряда (берется из таблицы 4);

n – число интервалов статистического ряда;

– значение функции распределения (интегральной функции) соответственно в конце i-го и -го интервалов;

– теоретическая частота в i-м интервале статистического ряда.

Делаем проверку для НЗР:

Делаем проверку для ЗРВ:

Значение критерия, вычисленное по зависимости (17) для НЗР , а для ЗРВ ; число степеней свободы , где n – число интервалов статистического ряда, а m – число параметров ТЗР (для НЗР и ЗРВ m = 2); приняты уровень значимости (вероятность необоснованного отклонения гипотезы) . Необходимо выбрать ТЗР, наиболее адекватный распределению статистической информации.

По таблице В.2 приложения В [1] и k=5 определяем критическое значение -критерия: .

Сравниваем с . Так как только для ЗРВ, то делаем заключение о том, что выдвинутая гипотеза о сходимости опытного с теоретическим распределением ЗРВ с вероятностью не отвергается.

Для принятия окончательного решения определим вероятность подтверждения проверяемых ТЗР. Для этого опять используем таблицу В.2 [1]. Войдя в таблицу по этим значениям с учетом интерполяции определяем, что вероятность подтверждения выдвинутой гипотезы о ЗРВ в данном примере P =19%.

Следовательно, в этой ситуации принимается гипотеза о том, что анализируемая статистическая информация с достаточной степенью достоверности подчиняется закону распределения Вейбулла.

1.8 Интервальная оценка числовых характеристик износов

Закон распределения Вейбулла.

В этом случае доверительные границы определяют по формуле:

, (18)

где - коэффициенты распределения Вейбулла, и выбираются из таблицы В.3 приложения В[1];

Следовательно:

- нижняя граница доверительного интервала;

- верхняя граница доверительного интервала.

С вероятностью можем утверждать, что истинное значение математического ожидания попадет в интервал от 0,0482мм до 0,0540мм.

1.9 Определение относительной ошибки переноса

Более правильно характеризовать точность оценки показателя надежности относительной ошибкой, которая позволяет корректно сравнивать объекты, в том числе и по разнородным показателям.

(19)

где – верхняя граница изменения среднего значения показателя надежности, установленная с доверительной вероятностью ;

– оценка среднего значения показателя надежности.

Вычислим относительную ошибку переноса:

Максимально допустимая ошибка переноса ограничивается величиной 20%, т.е. .

1.10 Определение числа годных и требующих восстановления деталей

1) определим допустимые износы анализируемых деталей при их сопряжении с новыми и бывшими в эксплуатации деталями.

Для отверстия:

где – допустимый размер отверстия при сопряжении его с новыми деталями;

– допустимый размер отверстия при сопряжении его с деталями, бывшими в эксплуатации;

– наибольший предельный размер отверстия.

2) вычисленное значение допустимого износа отверстия отложили по оси абсцисс (Приложение Г). Из него восстановим перпендикуляр до пересечения с теоретической кривой износов . Полученную точку спроектируем на ось ординат и снять значение вероятности того, что детали окажутся годными (их восстановление не потребуется), при условии их сборки с новыми сопрягаемыми деталями. При этом число годных деталей может быть вычислено по зависимости:

(20)


3) выполняя аналогичные графические построения для значения , определяют число годных деталей при сопряжении их с деталями, бывшими в эксплуатации:

(21)

4) число деталей, требующих восстановления , определяется как

(22)

5) следует заметить, что большее практическое значение имеют не сами числа , , , а соответствующие коэффициенты, значения которых определяются ниже.

Коэффициент годности анализируемых деталей:

Коэффициент восстановления деталей:

=1-0,53=0,47.

Вывод

По значениям вычисленных коэффициентов можно сделать вывод,что необходимо более тщательно планировать производственную программу ремонтного предприятия по анализируемой детали.

Характеристики

Тип файла
Документ
Размер
2,74 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6913
Авторов
на СтудИзбе
267
Средний доход
с одного платного файла
Обучение Подробнее